Skip to main content
Book cover

Cytoskeleton pp 167–201Cite as

Cytoskeleton and Internal Organization of the Cell

  • Chapter

Part of the book series: Cellular Organelles ((CORG))

Abstract

Cytoskeleton is the structure-forming component of the cell. It determines to a large degree the cell shape and distribution of other intracellular organelles and of the components of the plasma membrane. Cytoskeleton integrates various parts of the single cell and various cells into united structures. There are several levels of this integration.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  • Aebi, U., Cohn, J., Buhle, L., and Gerace, L. (1986) The nuclear lamina is a meshwork of intermediate-type filaments, Nature 323:560–564.

    Article  PubMed  CAS  Google Scholar 

  • Albrecht-Buehler, G. (1980) Autonomous movements of cytoplasmic fragments, Proc. Natl Acad. Sci. USA 77:6639–6644.

    Article  PubMed  CAS  Google Scholar 

  • Forman, D. S. (1984) Axonal transport of organelles, Trends Neurosci. 7:112–116.

    Article  CAS  Google Scholar 

  • Gelfand, V. I., Glushankova, N. A., Ivanova, O. Y., Mittelman, L. A., Pletyushkina, O. Y., Vasiliev, J. M., and Gelfand, I. M. (1985) Polarization of cytoplasmic fragments microsurgically detached from mouse fibroblasts, Cell Biol. Intern. Rep. 9:883–892.

    Article  CAS  Google Scholar 

  • Heath, J. P. (1983) Direct evidence for microfilament-mediated capping of surface receptors on crawling fibroblasts, Nature 302:532–534.

    Article  PubMed  CAS  Google Scholar 

  • Herman, B., and Albertini, D. F. (1984) A time-lapse video image intensification analysis of cytoplasmic organelle movements during endosome translocation, J. Cell Biol. 98:565–576.

    Article  PubMed  CAS  Google Scholar 

  • Ip, W., Murphy, D. B., and Heuser, J. E. (1984) Arrest of pigment granule motion in erythrophores by quick-freezing, J.Ultrastruct Res. 86:162–175.

    Article  PubMed  CAS  Google Scholar 

  • Kuznetsov, S. A., and Gelfand, V. I. (1986) Bovine brain kinesin is a microtubule-activated ATPase, Proc. Natl. Acad. Sci. USA 83:8530–8534.

    Article  PubMed  CAS  Google Scholar 

  • Lyass, L. A., Bershadsky, A. D., Gelfand, V. I., Serpinskaya, A. S., Stavrovskaya, A. A., Vasiliev, J. M., and Gelfand, I. M. (1984) Multinucleation-induced improvement of the spreading of transformed cells on the substratum, Proc. Natl. Acad. Sci. USA 81:3098–3102.

    Article  PubMed  CAS  Google Scholar 

  • McKeon, F. D., Krischner, M. W., and Caput, D. (1986) Homologies in both primary and secondary structure between nuclear envelope and intermediate filament proteins. Nature 319:463–468.

    Article  PubMed  CAS  Google Scholar 

  • McNiven, M. A., and Porter, K. R. (1984) Chromatophores—Models for studying cytomatrix translocation, J. Cell Biol. 99:152s-158s.

    Article  PubMed  CAS  Google Scholar 

  • McNiven, M. A., Wang, M., and Porter, K. R. (1984) Microtubule polarity and the direction of pigment transport reverse simultaneously in surgically severed melanophore arms. Cell 37:753–765.

    Article  PubMed  CAS  Google Scholar 

  • Murphy, D. B., and Grasser, W. A. (1984) Intermediate filaments in the cytoskeletons of fish chromatophores, J. Cell Sci. 66:353–366.

    PubMed  CAS  Google Scholar 

  • Scheer, U., Hinssen, H., Franke, W. W., and Jockusch, B. M. (1984) Microinjection of actin-binding proteins and actin antibodies demonstrates involvement of nuclear actin in transcription of lampbrush chromosomes. Cell 39:111–122.

    Article  PubMed  CAS  Google Scholar 

  • Schliwa, M., Pryzwansky, K. B., and van Blerkom, J. (1982) Implications of cytoskeletal interactions for cellular architecture and behavior, Phil. Trans. R. Soe. Lond. B. 299:199–205.

    Article  CAS  Google Scholar 

  • Tiwari, S. C., Wick, S. M., Williamson, R. E., and Cunning, B. E. S. (1984) Cytoskeleton and integration of cellular function in cells of higher plants, J. Cell Biol. 99:63s-69s.

    Article  PubMed  CAS  Google Scholar 

  • Travis, J. L., Kenealy, J. F. X., and Allen, R. D. (1983) Studies on the motility of the foraminifera II. The dynamic microtubular cytoskeleton of the reticulopodial network ofAllogromia latieollaris, J. Cell Biol. 97:1668–1676.

    Article  PubMed  CAS  Google Scholar 

  • Tsukita, S., and Ishikava, H. (1980) The movement of membranous organelles in axons. Electron microscopic identification of anterogradely and retrogradely transported organelles, J. Cell Biol. 84:513–530.

    Article  PubMed  CAS  Google Scholar 

  • Vale, R. D., Reese, T. S., and Sheetz, M. P. (1985a) Identification of a novel force-generating protein, kinesin, involved in microtubule-based motility. Cell 42:39–50.

    Article  PubMed  CAS  Google Scholar 

  • Vale, R. D., Schnapp, B. J., Mitchison, T., Steuer, E., Reese, T. S., and Sheetz, M. P. (1985b) Different axoplasmic proteins generate movement in opposite directions along microtubules in vitro, Cell 43:623–632.

    Article  PubMed  CAS  Google Scholar 

Additional Readings: General organization of the cytoskeleton; association between different cytoskeletal elements and between cytoskeleton and cell organelles

  • Arakawa, T., and Frieden, C. (1984) Interaction of microtubule-associated proteins with actin filaments. Studies using the fluorescence-photobleaching recovery technique, J. Biol. Chem. 259:11730–11734.

    CAS  Google Scholar 

  • Ball, E. H., and Singer, S. J. (1982) Mitochondria are associated with microtubules and not with intermediate filaments in cultured fibroblasts, Proc. Natl. Acad. Sci USA 79:123–126.

    Article  PubMed  CAS  Google Scholar 

  • Bennet, V. (1984) Brain ankyrin, membrane-associated protein with binding sites for spectrin, tubulin and the cytoplasmic domain of the erythrocyte anion channel, J. Biol. Chem. 259:13550–13559.

    Google Scholar 

  • Bloom, G. S., and Vallee, R. B. (1983) Association of microtubule-associated protein 2 (MAP2) with microtubules and intermediate filaments in cultured brain cells, J. Cell Biol. 96:1523–1531.

    Article  PubMed  CAS  Google Scholar 

  • Brinkley, B. R. (1982) Summary: Organization of the cytoplasm,Cold Spring Harbor Symp. Quant. Biol 46:1029–1040.

    Article  PubMed  Google Scholar 

  • Clegg, J. S. (1984) Intracellular water and the cytomatrix: Some methods of study and current views, J.Cell Biol. 99:167s-171s.

    Article  PubMed  CAS  Google Scholar 

  • Cohen, J., de Loubresse, N. G., and Beisson, J. (1984) Actin microfilaments in Paramecium: Localization and role in intracellular movements, Cell Motil. 4:443–468.

    Article  PubMed  CAS  Google Scholar 

  • Collot, M., Louvard, D., and Singer, S. J. (1984) Association between lysosomes and microtubules in cultured fibroblasts, as studied by double immunofluorescence labelling, J. Submicrosc. Cytol 16:65–67.

    Google Scholar 

  • Couchman, J. R., and Rees, D. A. (1982) Organelle-cytoskeleton relationships in fibroblasts: Mitochondria, Golgi apparatus, and endoplasmic reticulum in phases of movement and growth, Eur. J. Cell Biol. 27:47–54.

    PubMed  CAS  Google Scholar 

  • Geiger, B., and Singer, S. J. (1980) The association of microtubules and intermediate filaments in chicken gizzard cells as detected by double immunofluorescence, Proc. Natl. Acad. Sci. USA 77:4769–4773.

    Article  PubMed  CAS  Google Scholar 

  • Gershon, N. D., Porter, K. R., and Trus, B. L. (1985) The cytoplasmic matrix: Its volume and surface area and the diffusion of molecules through it, Proc. Natl. Acad. Sci. USA 82:5030–5034.

    Article  PubMed  CAS  Google Scholar 

  • Geuens, G., De Brabander, M., Nuydens, R., and De Mey, J. (1983) The interaction between microtubules and intermediate filaments in cultured cells treated with taxol and nocodazole. Cell Biol. Int. Rep. 7:35–47.

    Article  PubMed  CAS  Google Scholar 

  • Heiman, R., Shelanski, M. L., and Liem, R. K. H. (1985) Microtubule-associated proteins bind specifically to the 70-kDa neurofilament protein, J. Biol. Chem. 260:12160–12166.

    Google Scholar 

  • Hirokawa, N. (1982) Cross-linker system between neurofilaments, microtubules, and membranous organelles in frog axon revealed by quick-freeze, deep-etching method, J. Cell Biol. 94:129–142.

    Article  PubMed  CAS  Google Scholar 

  • Hirokawa, N., Cheney, R. F., and Willard, M. (1983) Location of a protein of the fodrin-spectrin- TW260J240 family in the mouse intestinal brush border. Cell 32:953–965.

    Article  PubMed  CAS  Google Scholar 

  • Leterrier, J. F., Liem, R. K. H., and Shelanski, M. L. (1982) Interactions between neurofilaments and microtubule-associated proteins: A possible mechanism for intraorganellar bridging, J. Cell Biol. 95:982–986.

    Article  PubMed  CAS  Google Scholar 

  • Lloyd, C. W. (1984) Toward a dynamic helical model for the influence of microtubules on wall patterns in plants, Int. Rev. Cytol. 86:1–51.

    Article  Google Scholar 

  • Mangeat, P. H., and Burridge, K. (1983) Immunoprecipitation of nonerythrocyte spectrin within live cells following microinjection of specific antibodies: Relation to cytoskeletal structures, J. Cell Biol. 98:1363–1377.

    Article  Google Scholar 

  • Pollard, T. D., Sciden, S. C., and Maupin, P. (1984) Interaction of actin filaments with microtubules, J. Cell Biol. 99(lpt2):33s-37s.

    Article  PubMed  CAS  Google Scholar 

  • Rogalski, A. A., and Singer, S. J. (1984) Association of elements of the Golgi apparatus with microtubules, J. Cell Biol. 99:1092–1100.

    Article  PubMed  CAS  Google Scholar 

  • Sandoval, I. V., Bonifacino, J. S., Klausner, R. D., Henkart, M., and Wehland, J. (1984) Role of microtubules in the organization and localization of the Golgi apparatus, J. Cell Biol. 99:113s-118s.

    Article  PubMed  CAS  Google Scholar 

  • Schliwa, M., and van Blerkom, J. (1981) Structural interaction of cytoskeletal components,J. Cell Biol. 90:222–235.

    Article  PubMed  CAS  Google Scholar 

  • Thyberg, J., and Moskalewski, S. (1985) Microtubules and the organization of the Golgi complex, Exp. Cell Res. 159:1–16.

    Article  PubMed  CAS  Google Scholar 

  • Tiwari, S. C., Wick, S. M., Williamson, R. E., and Gunning, B. E. S. (1984) The cytoskeleton and integration of cellular function in cells of higher plants, J. Cell Biol. 99(lpt2):63s-69s.

    Article  PubMed  CAS  Google Scholar 

Intracellular transport

  • Adams, R. J. (1982) Organelle movement in axons depends upon ATP,Nature 297:327–329.

    Article  PubMed  CAS  Google Scholar 

  • Adams, R. J., and Bray, J. D. (1983) Rapid transport of foreign particles microinjected into crab axons. Nature 303:718–720.

    Article  PubMed  CAS  Google Scholar 

  • Allen, N. S., and Allen, R. D. (1978) Cytoplasmic streaming in green plants, Ann. Rev. Biophys. Bioeng. 7:497–526.

    Article  CAS  Google Scholar 

  • Allen, R. D. (1985) New observations on cell architecture and dynamics by video-enhanced contrast optical microscopy, Ann. Rev. Biophys. Biophys. Chem. 14:265–290.

    Article  CAS  Google Scholar 

  • Allen, R. D., Weiss, D. G., Hayden, J. H., Brown, D. T., Fujiwake, H., and Simpson, M. (1985) Gliding movement of and bidirectional transport along single native microtubules from squid axoplasm: Evidence for an active role of microtubules in cytoplasmic transport, J. Cell Biol 100:1736–1752.

    Article  PubMed  CAS  Google Scholar 

  • Bard, F., Bourgeois, C. A., Costagliola, D., and Bouteille, M. (1985) Rotation of the cell nuclei in living cells, a quantitative analysis, Biol. Cell 54:135–142.

    Article  PubMed  CAS  Google Scholar 

  • Beckerle, M. C. (1984) Microinjected fluorescent polystyrene beads exhibit saltatory motion in tissue cuhure cells, J.Cell Biol. 98:2126–2132.

    Article  PubMed  CAS  Google Scholar 

  • Beckerle, M. C., and Porter, K. R. (1983) Analysis of the role of microtubules and actin in ery- throphore intracellular motility, J.Cell Biol. 96:354–362.

    Article  PubMed  CAS  Google Scholar 

  • Brady, S. T., Lasek, R. J., and Allen, R. D. (1982) Fast axonal transport in extruded axoplasm from squid giant axon. Science 218:1129–1131.

    Article  PubMed  CAS  Google Scholar 

  • Brady, S. T., Lasek, R. J., Allen, R. D., Yin, H. L., and Stossel, T. P. (1984) Gelsolin inhibition of fast axonal transport indicates a requirement for actin microfilaments, Nature 310:56–58.

    Article  PubMed  CAS  Google Scholar 

  • Brady, S. T., Lasek, R. J., and Allen, R. D. (1985) Video microscopy of fast axonal transport in extruded axoplasm: A new model for study of molecular mechanisms, Cell Motil. 5:81–101.

    Article  PubMed  CAS  Google Scholar 

  • Clark, T. G., and Rosenbaum, J. L. (1984) Energy requirements for pigment aggregation in Fun- duJus melanophores, Cell Motil. 4:431–441.

    Article  PubMed  CAS  Google Scholar 

  • De Brabander, M., Geuens, G., Nuydens, R., Moeremans, M., and De Mey, J. (1985) Probing micro- tubule-dependent intracellular motility with nanometre particle video ultramicroscopy (nanovid ultramicroscopy), Cytobios 43:273–283.

    PubMed  Google Scholar 

  • Forman, D. S., Brown, K. J., and Promersberger, M. E. (1983) Selective inhibition of retrograde axonal transport by erythro-9–3(2-hydroxynonyl) adenine. Brain Res. 272:194–197.

    Article  PubMed  CAS  Google Scholar 

  • Freed, J. J., and Lebowitz, M. M. (1970) The association of a class of saltatory movements with microtubules in cultured cells, J. Cell Biol. 45:334–354.

    Article  PubMed  CAS  Google Scholar 

  • Gilbert, S. P., Allen, R. D., and Sloboda, R. D. (1985) Translocation of vesicles from squid axoplasm on flagellar microtubules, Nature 315:245–248.

    Article  PubMed  CAS  Google Scholar 

  • Hayden, J. H., and Allen, R. D. (1984) Detection of single microtubules in living cells: Particle transport can occur in both directions along the same microtubule, J. Cell Biol. 99:1785–1793.

    Article  PubMed  CAS  Google Scholar 

  • Hayden, J. H., Allen, R. D., and Goldman, R. D. (1983) Cytoplasmic transport in keratocytes: Direct visualization of particle translocation along microtubules, Cell Motil. 3:1–19.

    Article  PubMed  CAS  Google Scholar 

  • Herman, B., and Albertini, D. F. (1984) A time-lapse video image intensification analysis of cytoplasmic organelle movements during endosome translocation, J. Cell Biol. 98:565–575.

    Article  PubMed  CAS  Google Scholar 

  • Koonce, M. P., and Schliwa, M. (1985) Bidirectional organelle transport can occur in cell processes that contain single microtubules, J. Cell Biol. 100:322–326.

    Article  PubMed  CAS  Google Scholar 

  • Lasek, R. J., Garner, J. A., and Brady, S. T. (1984) Axonal transport of the cytoplasmic matrix, J. Cell Biol. 99(lpt2):212s-221s.

    Article  PubMed  CAS  Google Scholar 

  • Martz, D., Lasek, R. J., Brady, S. T., and Allen, R. D. (1984) Mitochondrial motility in axons: membranous organelles may interact with the force generating system through multiple surface binding sites, Cell Motil. 4:89–101.

    Article  PubMed  CAS  Google Scholar 

  • Nothnagel, E. A., Barak, L. S., Sanger, J. W., and Webb, W. W. (1981) Fluorescence studies on modes of cytochalasin B and phallotoxin action on cytoplasmic streaming in Chara, J. Cell Biol. 88:364–372.

    Article  PubMed  CAS  Google Scholar 

  • Schliwa, M. (1984) Mechanisms of intracellular organelle transport, in Cell and Muscle Motility, Vol. 5 (J. W. Shay, ed.). Plenum Press, New York, pp. 1–80.

    Google Scholar 

  • Stearns, M. E., and Ochs, R. L. (1982) A functional in vitro model for studies of intracellular motility in digitonin-permeabilized erythrophores, J. Cell Biol. 94:727–739.

    Article  PubMed  CAS  Google Scholar 

Cytoskeleton and membrane; capping and related phenomena

  • Abercrombie, M., Heaysman, J. E. M., and Pegrum, S. M. (1972) The locomotion of fibroblasts in culture. V. Surface marking with concanavalin A,Exp. Cell Res. 73:536–539.

    Article  PubMed  CAS  Google Scholar 

  • Ben-Ze’ev, A., Duerr, A., Solomon, F., and Penman, S. (1979) The outer boundary of the cytoskeleton: A lamina derived from plasma membrane proteins, Cell, 17:859–865.

    Article  PubMed  Google Scholar 

  • Bourguignon, L. Y. W., and Bourguignon, G. L. (1984) Capping and the cytoskeleton. Int. Rev. Cytol. 87:195–224.

    Article  PubMed  CAS  Google Scholar 

  • Bowser, S. S., and Bloodgood, R. A. (1984) Evidence against surf-riding as a general mechanism for surface motility. Cell Motil. 4:305–314.

    Article  PubMed  CAS  Google Scholar 

  • Bowser, S. C., and Rieder, G. L. (1985) Evidence that cell surface motility in Allogromia is mediated by cytoplasmic microtubules, Can. J. Biochem. Cell Biol. 63:608–620.

    PubMed  CAS  Google Scholar 

  • Doyles, J., and Baiton, D. F. (1981) Changes in plasma-membrane-associated filaments during endocytosis and exocytosis in polymorphonuclear leukocytes, Cell 24:905–914.

    Article  Google Scholar 

  • Bratscher, M. S. (1976) Directed lipid flow in cell membranes,Nature 260:21–23.

    Article  Google Scholar 

  • Carboni, J. M., and Condeelis, J. S. (1985) Ligand-induced changes in the location of actin, myosin, 95K (a-actinin), and 120K protein in amebae of Dictyostelium discoideum, J. Cell Biol. 100:1884–1893.

    Article  PubMed  CAS  Google Scholar 

  • Condeelis, J., (1979) Isolation of concanavalin A caps during various stages of formation and their association with actin and myosin, J. Cell Biol. 80:751–758.

    Article  PubMed  CAS  Google Scholar 

  • Coudrier, E., Reggio, H., and Louvard, D. (1983) Characterization of an integral membrane glycoprotein associated with the microfilaments of pig intestinal microvilli, EMBO (Eur. Mol. Biol. Organ.) J. 2:469–475.

    CAS  Google Scholar 

  • Dellagi, K., and Brouet, J. C. (1982) Redistribution of intermediate filaments during capping of lymphocyte surface molecules. Nature 298:284–286.

    Article  PubMed  CAS  Google Scholar 

  • Dembo, M., and Harris, A. K. (1981) Motion of particles adhering to the leading lamella of crawling cells, J. Cell Biol. 91:528–536.

    Article  PubMed  CAS  Google Scholar 

  • Dentler, W. L., Pratt, M. M., and Stephens, R. E. (1980) Microtubule-membrane interactions in cilia. II. Photochemical cross-linking of bridge structures and the identification of a membrane associated dynein-like ATPase, J. Cell Biol. 84:381–403.

    Article  PubMed  CAS  Google Scholar 

  • De Petris, S. (1977) Distribution and mobility of plasma membranae components on lymphocytes, in Dynamic Aspects of Cell Surface Organization (G. Poste and G. L. Nicolson, eds.), ElsevierJ North-Holland Biochemical Press, Amsterdam, pp. 643–728.

    Google Scholar 

  • Geiger, B. (1983) Membrane-cytoskeleton interaction, Biochimi. Biophys. Acta 737:305–341.

    CAS  Google Scholar 

  • Geiger, B. Z., Avnur,J. E., Kreis, T. E., and Schlessinger, J. (1984) The dynamics of cytoskeletal organization in areas of cell contact, in Cell and Muscle Motility, Vol. 5 (J. W. Shag, ed.). Plenum Press, New York, pp. 195–235.

    Google Scholar 

  • Georgatos, S. D., and Marchesi, V. T. (1985) The binding of vimentin to human erythrocyte membranes: A model system for the study of intermediate filament-membrane interactions, J. Cell Biol. 100:1955–1961.

    Article  PubMed  CAS  Google Scholar 

  • Goodloe-Holland, C. M., and Luna, E. J: (1984) A membrane cytoskeleton from Dictyostelium discoideum. III. Plasma membrane fragments bind predominantly to the sides of actin filaments, J. Cell Biol. 99:71–78.

    Article  PubMed  CAS  Google Scholar 

  • Harris, A. K. (1976) Recycling of dissolved plasma membrane components as an explanation of the capping phenomenon. Nature 263:781–783.

    Article  PubMed  CAS  Google Scholar 

  • Heath, J. P. (1983) Direct evidence for microfilament-mediated capping of surface receptors on crawling fibroblasts. Nature 302:532–534.

    Article  PubMed  CAS  Google Scholar 

  • Hewitt, J. A. (1979) Surf-riding model for cell capping, J. Theor. Biol. 80:115–127.

    Article  PubMed  CAS  Google Scholar 

  • Jacobson, B. S. (1983) Interaction of the plasma membrane with the cytoskeleton: An overview. Tissue Cell 15:829–852.

    Article  PubMed  CAS  Google Scholar 

  • Laub, F., Kaplan, M., and Gitler, C. (1981) Actin polymerization accompanies thy-l-capping on mouse thymocytes, FEBS Lett. 124:35–38.

    Article  PubMed  CAS  Google Scholar 

  • Lehto, B-P., Vartio, T., Badley, R. A., and Virtanen, I., (1983) Characterization of a detergent resistant surface lamina in cultured human fibroblasts, Exp. Cell Res. 143:287–294.

    Article  PubMed  CAS  Google Scholar 

  • Levine, J., and Willard, M. (1983) Redistribution of fodrin accompanying capping of cell surface molecules, Proc. Natl. Acad. Sci. USA 80:191–195.

    Article  PubMed  CAS  Google Scholar 

  • Mangeat, P., and Burridge, K. (1984) Actin-membrane interaction in fibroblast: What proteins are involved in this association? J. Cell Biol. 99:95s-103s.

    Article  PubMed  CAS  Google Scholar 

  • Moran, D. T., Varela, F. J., and Rowley, J. C. (1977) Evidence for active role of cilia in sensory transduction, Proc. Natl. Acad. Sci. USA 74:793–797.

    Article  PubMed  CAS  Google Scholar 

  • Oliver, J. M., and Berlin, R. D. (1982) Distribution of receptors and functions on cell surfaces: Quantitation of ligand-receptor mobility and a new model for the control of plasma membrane topography, Phil. Trans. R. Soc. Lond. B 299:215–235.

    Article  CAS  Google Scholar 

  • Rogalski, A. A., Bergman, J. E., and Singer, S. J. (1984) Effect of microtubule assembly status on the intracellular processing and surface expression of an integral protein of the plasma membrane, J. Cell Biol. 99:1101–1109.

    Article  PubMed  CAS  Google Scholar 

  • Rogers, K. A., Khoshbaf, M. A., and Brown, D. L. (1981) Relationship of microtubule organization in lymphocytes to the capping of immunoglobulin, Eur. J. Cell Mol. 24:1–8.

    CAS  Google Scholar 

  • Schlessinger, J. (1983) Mobilities of cell-membrane proteins: How are they modulated by the cytoskeleton? Trends Neurosci. (TINS) 6:360–363.

    Article  CAS  Google Scholar 

  • Singer, S. J., Ash, J. F., Bourguignon, L. Y. W., Heygeness, M. H., and Louvard, D. (1978) Transmembrane interactions and the mechanisms of transport of proteins across membranes, J. SupramoL Struct. 9:373–389.

    Article  PubMed  CAS  Google Scholar 

  • Smith, B. A., Clark, W. R., and McConnell, H. M. (1979) Anisotropic molecular motion of cell surfaces, Proc. Natl Acad. Sci. USA 76:5641–5644.

    Article  PubMed  CAS  Google Scholar 

  • Spiegel, S., Kassis, S., Wilchek, M., and Fishman, P. H., (1984) Direct visualization of redistribution and capping of fluorescent gangliosides on lymphocytes, J. Cell Biol. 99:1575–1581.

    Article  PubMed  CAS  Google Scholar 

  • Vasiliev, J. M., Gelfand, I. M., Domnina, L. V., Dorfman, N. A., and Pletyushkina, O. Y. (1976) Active cell edge and movements of concanavalin A receptors of the surface of epithelial and fibroblastic cells, Proc. Natl Acad. Sci. USA 73:4085–4089.

    Article  PubMed  CAS  Google Scholar 

Multinuclear cells and cell fragments

  • Albrecht-Buehler, C. (1982) Does blebbing reveal the convulsive flow of liquid and solutes through the cytoplasmic meshwork? Cold Spring Harbor Symp. Quant. Biol. 46:45–50.

    Article  PubMed  Google Scholar 

  • Cain, H., Kraus, B., Fringes, B., Osborn, M., and Weber, K. (1981) Centrioles, microtubules and microfilaments in activated mononuclear and multinucleate macrophages from rat peritoneum: Electron-microscopic and immunofluorescence microscopic studies, J. Pathol. 133:301–323.

    Article  PubMed  CAS  Google Scholar 

  • Euteneuer, U., and Schliwa, M. (1984) Persistent, directional motility of cells and cytoplasmic fragments in the absence of microtubules. Nature 310:58–60.

    Article  PubMed  CAS  Google Scholar 

  • Holmes, K., and Coppin, P. W. (1968) On the role of microtubules in movement and alignment of nuclei in virus-induced syncytia, J. Cell Biol. 51:752–762.

    Google Scholar 

  • Keller, H. U., and Bessis, M. (1975) Migration and Chemotaxis of anucleate cytoplasmic leukocyte fragments. Nature 258:723–724.

    Article  PubMed  CAS  Google Scholar 

  • Shaw, J., and Bray, D. (1977) Movement and extension of isolated growth cones, Exp. Cell Res. 104:55–62.

    Article  PubMed  CAS  Google Scholar 

  • Wang, E., Cross, R. H., and Choppin, P. W. (1979) Involvement of microtubules and 10 nm filaments in the movement and positioning of nuclei in syncytia, J. Cell Biol. 83:320–327.

    Article  PubMed  CAS  Google Scholar 

  • Wang, E., Roos, D. S., Hegeness, N. H., and Choppin, P. W. (1982) Function of cytoplasmic fibers in syncytia. Cold Spring Harbor Symposia Quant. Biol. 46:997–1012.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Plenum Press, New York

About this chapter

Cite this chapter

Bershadsky, A.D., Vasiliev, J.M. (1988). Cytoskeleton and Internal Organization of the Cell. In: Cytoskeleton. Cellular Organelles. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5278-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5278-5_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5280-8

  • Online ISBN: 978-1-4684-5278-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics