Skip to main content
Book cover

Cytoskeleton pp 155–164Cite as

Unconventional Fibrillar Structures in the Cytoplasm

  • Chapter
  • 168 Accesses

Part of the book series: Cellular Organelles ((CORG))

Abstract

Besides the classical three groups of cytoskeletal structures, a number of other fibrillar elements have been described in the cytoplasm. These structures have not yet been well explored. Some of them have been seen only in the cells of a few types of lower eukaryotes. Even the existence of some of these structures is still controversial. Nevertheless, it is possible that future studies will show that at least some of these fibrils are not artifacts or exotic rarities, but are important and common components of the cytoskeleton. Therefore, the data on these structures deserve attention.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  • Heuser, J. E., and Kirschner, M. (1980) Filament organization revealed in platinum replicas of freeze-dried cytoskeletons, J. Cell Biol 86:212–234.

    Article  PubMed  CAS  Google Scholar 

  • Hirokawa, N. (1982) Cross-linker system between neurofilaments, microtubules, and membranous organelles in frog axons revealed by the quick-freeze, deep-etching method, J. Cell Biol 94:129–142.

    Article  PubMed  CAS  Google Scholar 

  • Maruyama, K., Sawada, H., Kimura, S., Ohashi, K., Higuchi, H., and Umazume, Y. (1984) Connectin filaments in stretched skinned fibers of from skeletal muscle, J. Cell Biol 99:1391–1397.

    Article  PubMed  CAS  Google Scholar 

  • Nelson, G. A., Roberts, T. M., and Ward, S. (1982) Caenorhabditis elegans spermatozoan locomotion: Amoeboid movement with almost no actin, J.Cell Biol 92:121–131.

    Article  PubMed  CAS  Google Scholar 

  • Porter, K. R., and Tucker, J. B. (1981) The ground substance of the living cell, Sci. Am. 244(3):57–67.

    Article  Google Scholar 

  • Routledge, L. M., Amos, W. B., Yew, F. F., and Weis-Fohg, T. (1976) New calcium-binding contractile proteins, in Cell Motility (R. Goldman, T. Pollard, and J. Rosenbaum, eds.). Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, pp. 93–114.

    Google Scholar 

  • Salisbury, J. L., Baron, A., Surek, B., and Melkonian, M. (1984) Striated flagellar roots: Isolation and partial characterization of a calcium-modulated contractile organelle, J. Cell Biol 99:962–970.

    Article  CAS  Google Scholar 

  • Schliwa, M., Van Blerkom, J., and Porter, K. R. (1981) Stabilization of the cytoplasmic ground substance in detergent-opened cells and a structural and biochemical analysis of its composition, Proc. Natl Acad. Sci USA 78:4329–4333.

    Article  PubMed  CAS  Google Scholar 

  • Trinick, J., Knight, P., and Whiting, A. (1984) Purification and properties of native titin, J. MoL Biol 180:331–356

    Article  PubMed  CAS  Google Scholar 

Additional Readings

  • Amos, W. B. (1972) Structure and coiling of the stalk in the Peritrich ciliates Vorticella and Carchesium, J.Cell Sci 10:95–122.

    PubMed  CAS  Google Scholar 

  • Amos, W. B., Routledge, L. M., and Yew, F. F. (1975) Calcium binding proteins in a vorticellid contractile organelle, J. Cell Sci. 19:203–213.

    PubMed  CAS  Google Scholar 

  • Bridgman, P. C., and Reese, T. S. (1984) The structure of cytoplasm in directly frozen cultured cells. I. Filamentous meshworks and the cytoplasmic ground substance, J. Cell Biol 99:1655–1668.

    Article  PubMed  CAS  Google Scholar 

  • Byers, H. R., and Porter, K. R. (1977) Transformations in the structure of the cytoplasmic ground substance in erythrophores during pigment aggregation and dispersion, J. Cell Biol. 75:541–558.

    Article  PubMed  CAS  Google Scholar 

  • Cachon, J., and Cachon, M. (1981) Movement by non-actin filament mechanisms,Biosystems 14:313–326.

    Article  PubMed  CAS  Google Scholar 

  • Cachon, J., and Cachon, M. (1984) An unusual mechanism of cell contraction: Leptodiscinae dino- flagellates, Cell Motil 4:41–55.

    Article  Google Scholar 

  • Cachon, J., and Cachon, M. (1985) Non-actin filaments and cell contraction in Kofoidinium and other dinoflagellates. Cell Motil. 5:1–15.

    Article  Google Scholar 

  • Cachon, J., Cachon, M., Tilney, L. G., and Tilney, M. (1976) Movement generated by interaction between dense material at the ends of microtubules and non-actin containing microfilaments inSticholonche zanclea, J. Cell Biol. 72:213–338.

    Google Scholar 

  • Ellisman, M. H., and Porter, K. R. (1980) Microtrabecular structure of the axoplasmic matrix: Visualization of cross-linking structures and their distribution, J. Cell Biol. 87:464–479.

    Article  PubMed  CAS  Google Scholar 

  • Gershon, N. D., Porter, K. R., and Trus, B. L. (1985) The cytoplasmic matrix: Its volume and surface area and the diffusion of molecules through it, Proc Natl. Acad. Sci. USA 82:5030–5034.

    Article  PubMed  CAS  Google Scholar 

  • Hirokawa, N., Cheney, R. E., and Willard, M. (1983) Location of a protein of the fodrin-spectrin- TW 260J240 family in the mouse intestinal brush border. Cell 32:953–965.

    Article  PubMed  CAS  Google Scholar 

  • Ip, W., Murphy, D. B., and Heuser, J. E. (1984) Arrest of pigment granule motion in erythrophores by quick-freezing, J.Ultrastruc. Res. 86:162–175.

    Article  CAS  Google Scholar 

  • Porter, K. B., Beckerle, M., and McNiven, M. (1983) The cytoplasmic matrix, in Modern Cell Biology, Vol. 2, Spatial Organization of Eukaryotic Cells (J. R. Mcintosh, ed.), Alan R. Liss, New York, pp. 259–262.

    Google Scholar 

  • Roberts, T. M. (1983) CrawlingCaenorbabditis elegans spermatozoa contact the substrate only by their pseudopods and contian 2-nm filaments. Cell Motil. 3:333–347.

    Article  Google Scholar 

  • Roberts, T. M., and Ward, S. (1982) Centripetal flow of pseudopodial surface components could propel the amoeboid movement ofCaenorbabditis eJegans spermatozoa, J. Cell Biol. 92:132–138.

    Article  PubMed  CAS  Google Scholar 

  • Schliwa, M., and Van Blerkom, J. (1981) Spatial interaction of cytoskeletal components, J. Cell Biol. 90:222–235.

    Article  PubMed  CAS  Google Scholar 

  • Wang, K., Ramirez-Mitchell, R., and Palter, D. (1984) Titin is an extraordinarily long, flexible, and slender myofibrillar protein, Proc. Natl. Acad. Sci. USA 81:3685–3689.

    Article  PubMed  CAS  Google Scholar 

  • Wolosewick, J. J., and Porter, K. R. (1979) Microtrabecular lattice of the cytoplasmic ground substance. Artifact or reality, J. Cell Biol. 82:114–139.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Plenum Press, New York

About this chapter

Cite this chapter

Bershadsky, A.D., Vasiliev, J.M. (1988). Unconventional Fibrillar Structures in the Cytoplasm. In: Cytoskeleton. Cellular Organelles. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5278-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5278-5_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5280-8

  • Online ISBN: 978-1-4684-5278-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics