Skip to main content

Abstract

De novo fatty acid synthesis (FAS) supplies fatty acids for a large variety of lipids, including membrane lipids, epiticular waxes and cutin, neutral storage lipids, and many natural products, such as acyl salicylates, polyacetylenes or macrocyclic lactones. Many of these specific lipids are found in highly differentiated plant cells, where they can often represent a major part of cell dry weight. The regulation of FAS, which in most cases supplies the same fatty acids (palmitic and oleic acids) for different end products, is therefore a key question.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. C. R. Slack and J. A. Browse, Synthesis of storage lipids in developing seeds, in: “Seed Physiology, Volume 1. Development”, D. R. Murray, ed., Academic Press, Sydney (1984).

    Google Scholar 

  2. P. K. Stumpf, Biosynthesis of saturated and unsaturated fatty acids, in: “The Biochemistry of Plants: A Comprehensive Treatise. Volume 4. Lipids: Structure and Function”, P. K. Stumpf, ed., Academic Press, New York (1980).

    Google Scholar 

  3. P. J. Weaire and R. G. O. Kekwick, The synthesis of fatty acids in avocado mesocarp and cauliflower bud tissue, Biochem. J. 146: 425 (1975).

    PubMed  CAS  Google Scholar 

  4. J. A. Miernyk and D. T. Dennis, The incorporation of glycolytic intermediates into lipids by plastids isolated from the developing endosperm of castor oil seeds (Ricinus communis L.), J. Expt. Bot. 34: 712 (1983).

    Article  CAS  Google Scholar 

  5. J. Browse and C. R. Slack, Fatty-acid synthesis in plastids from maturing safflower and linseed cotyledons, Planta 166: 74 (1985).

    Article  CAS  Google Scholar 

  6. J. B. Ohlrogge, D. N. Kuhn and P. K. Stumpf, Subcellular localisation of acyl carrier protein in leaf protoplasts of Spinacia oleracea, Proc. Natl. Acad. Sci. USA 76: 1194 (1979).

    Article  PubMed  CAS  Google Scholar 

  7. I. Caughey and R. G. O. Kekwick, Characteristics of some components of the fatty acid synthetase system of plastids from the mesocarp of avocado (Persea americana) fruit, Eur. J. Biochem. 123: 553 (1982).

    Article  PubMed  CAS  Google Scholar 

  8. T. Shimakata and P. K. Stumpf, The procaryotic nature of the fatty acid synthase of developing Carthamus tinctorium L. (Safflower) seeds, Arch. Biochem. Biophys. 217: 144 (1982).

    Article  PubMed  CAS  Google Scholar 

  9. T. Shimakata and P. K. Stumpf, The purification and function of acetyl coenzyme A: acyl carrier protein transacylase, J. Biol. Chem. 258: 3592 (1983).

    PubMed  CAS  Google Scholar 

  10. T. A. McKeon and P. K. Stumpf, Purification and characterization of the stearoyl-ACP desaturase and the acyl-ACP thioesterase from maturing seeds of saf flower, J. Biol. Chem. 257: 12141 (1982).

    PubMed  CAS  Google Scholar 

  11. J.B. Ohlrogge, W. E. Shine and P. K. Stumpf, Fat metabolism in higher plants: characterization of plant acyl-ACP and acyl-CoA hydrolases, Arch. Biochem. Biophys. 189: 382 (1978).

    Article  PubMed  CAS  Google Scholar 

  12. G. Roughan and R. Slack, Glycerolipid synthesis in leaves, Trends Biol. Sci. 9: 383 (1984).

    Article  CAS  Google Scholar 

  13. D. R. Thomas, M. Noh Hj Salil, A. Ariffin, R. J. Cooke, I. McLaren, B. C. S. Yong and C. Wood, The synthesis of short-and long-chain acylcarnitine by etiochloroplasts of greening barley leaves, Planta 158: 259 (1983).

    Article  CAS  Google Scholar 

  14. D. T. Dennis and J. A. Miernyk, Compartmentation of nonphotosynthetic carbohydrate metabolism, Ann. Rev. Plant Physiol. 33: 27 (1982).

    Article  CAS  Google Scholar 

  15. Y. Satoh, Q. Usami and M. Yamada, Glucose-6-phosphate dehydrogenase in plastids from developing castor bean seeds, Plant Cell Physiol. 24: 527 (1983)

    CAS  Google Scholar 

  16. M. Yamada and Q. Usami, Long chain fatty acid synthesis in developing castor bean seeds. IV. The synthetic system in protoplast ids, Plant Cell Physiol. 16: 879 (1975).

    CAS  Google Scholar 

  17. E. E. Reid, P. Thompson, C. R. Lyttle and D. T. Dennis, Pyruvate dehydrogenase complex from higher plant mitochondria and proplastids. Plant Physiol. 59: 842 (1977).

    Article  PubMed  CAS  Google Scholar 

  18. S. S. Singh, T. Y. Nee and M. R. Pollard, Acetate and mevalonate labeling studies with developing Cuphea lutea seeds, Lipids 21: 143 (1986).

    Article  CAS  Google Scholar 

  19. D. R. Nelson and R. W. Rinne, Citrate cleavage enzyme from developing soybean cotyledons. Incorporation of citrate carbon into fatty acids. Plant Physiol. 55: 69 (1975).

    CAS  Google Scholar 

  20. C. A. Adams and R. W. Rinne, Interactions of phosphoenolpyruvate carboxylase and pyruvic kinase in developing soybean seeds, Plant Cell Physiol. 22: 1011 (1981).

    CAS  Google Scholar 

  21. R. Douce, in “Mitochondria in Higher Plants. Structure, Function, and Biogenesis,” Academic Press, Orlando (1985).

    Google Scholar 

  22. A. R. Slabas and A. Hellyer, Rapid purification of a high molecular weight subunit polypeptide form of rapeseed acetyl-CoA carboxylase. Plant Sci. 39: 177 (1985).

    Article  CAS  Google Scholar 

  23. S. A. Finlayson and D. T. Dennis, Acetyl-coenzyme A carboxylase from the developing endosperm of Ricinus communis. Isolation and characterization, Arch. Biochem. Biophys. 225: 576 (1983).

    Article  PubMed  CAS  Google Scholar 

  24. S. B. Mohan and R.G.O. Kekwick, Acetyl-coenzyme A carboxylase from avocado (Persea americana) plastids and spinach (Spinacia oleracea) chloroplasts. Biochem. J. 187: 667, (1980).

    PubMed  CAS  Google Scholar 

  25. K. C. Eastwell and P. K. Stumpf, Regulation of plant acetyl-CoA carboxylase by adenylate nucleotides, Plant Physiol. 72: 50 (1983).

    Article  PubMed  CAS  Google Scholar 

  26. A. L. Urie, Inheritance of partial hull in safflower, Crop Sci. 26: 493 (1986).

    Article  Google Scholar 

  27. B. R. Stefansson, The development of improved rapeseed cultivars, in: “High and low erucic acid rapeseed oils. Production, usage, chemistry, and toxicological evaluation,” J. K. G. Kramer, F. D. Sauer and W. J. Pigden, eds., Academic Press, Toronto (1983).

    Google Scholar 

  28. M. Stitt, Fine control of sucrose synthesis by fructose-2, 6-bisphosphate, in: “Regulation of carbon partitioning in photosynthetic tissue”, R. L. Heath and J. Preiss, eds., ASPP monograph (1985).

    Google Scholar 

  29. E. Turnham and D. H. Northcote, Changes in the activity of acetyl-CoA carboxylase during rapeseed formation, Biochem. J. 212: 223 (1983).

    PubMed  CAS  Google Scholar 

  30. S. S. Singh, T. Nee and M. R. Pollard, Neutral lipid biosynthesis in developing Cuphea seeds, in: “Structure, function and metabolism of plant lipids,” P. A. Siegenthaler and W. Eichenberger, eds., Elsevier Science Publishers, Amsterdam (1984).

    Google Scholar 

  31. J. B. Ohlrogge and T. M. Kuo, Control of lipid synthesis during soybean seed development: enzymic and immunochemical assay of acyl carrier protein, Plant Physiol. 74: 622 (1984).

    Article  PubMed  CAS  Google Scholar 

  32. R. J. Ireland and D. T. Dennis, Isoenzymes of the glycolytic and pentosephosphate pathways during the development of the castor oil seed, Can. J. Bot. 59: 1423 (1981).

    Article  CAS  Google Scholar 

  33. J. B. Ohlrogge and T. M. Kuo, Plants have isoforms for acyl carrier protein that are expressed differently in different tissues, J. Biol. Chem. 260: 8032 (1985).

    PubMed  CAS  Google Scholar 

  34. C. A. Adams, T. H. Broman and R. W. Rinne, Use of [3, 4-14C] glucose to assess in vivo competition for phosphoenolpyruvate between phosphoenolypyruvate carboxylase and pyruvate kinase in developing soybean seeds, Plant Cell Physiol. 23: 959 (1982).

    CAS  Google Scholar 

  35. M. L. Ernst-Fonberg, Fatty acid synthetase activity in Euglena gracelis variety bacillarius. Characterisation of an acyl carrier protein dependent system, Biochemistry 12: 2449 (1973).

    Article  PubMed  CAS  Google Scholar 

  36. R. W. Hendren and K. Bloch, Fatty acid synthesis from Euglena gracilis. Separation of component activities of the ACP-dependent fatty acid syntehtase and partial purification of the β-ketoacyl-ACP synthetase, J. Biol. Chem. 255: 1504 (1980).

    PubMed  CAS  Google Scholar 

  37. P. E. Kolattukudy, A. J. Poulose and Y. S. Kim, Malonyl-CoA decarboxylase from avian, mammalian and microbial sources, Methods Enzymol. 71: 150 (1981).

    Article  PubMed  CAS  Google Scholar 

  38. M. D. Hatch and P. K. Stumpf, Fat metabolism in higher plants. XVII. Metabolism of malonic acid and its α-substituted derivatives in plants, Plant Physiol. 36: 121 (1961).

    Article  Google Scholar 

  39. E. J. Mitzen, A. A. Ammouni and N. H. Koeppen, Developmental changes in malonate-related enzymes of rat brain, Arch. Biochem. Biophys. 175: 436 (1976).

    Article  PubMed  CAS  Google Scholar 

  40. K. C. Oo and P. K. Stumpf, Fatty acid biosynthesis in the developing endosperm of Cocos nucifera, Lipids 14: 132 (1979).

    Article  CAS  Google Scholar 

  41. A. R. Slabas, J. Harding, A. Hellyer, C. Sidebottom, H. Gwynne, R. Kessell and M. P. Tombs, Enzymology of plant fatty acid biosynthesis, in: “Structure, Function and Metabolism of Plant Lipids”, P. A. Siegenthaler and W. Eichenberger, eds., Elsevier Science Publishers, Amsterdam (1984).

    Google Scholar 

  42. F. Hirsinger, Agronomic potential and seed composition of Cuphea, an annual crop for lauric and capric seed oils, J. Am. Oil Chem. Soc. 62: 76 (1985).

    Article  Google Scholar 

  43. K. P. Huang and P. K. Stumpf, Fat metabolism in higher plants. XLIV. Fatty acid synthesis by a soluble fatty acid synthetase from Solanum tuberosum, Arch. Biochem. Biophys. 143: 412 (1971).

    Article  PubMed  CAS  Google Scholar 

  44. N. M. Packter and P. K. Stumpf, Fat metabolism in higher plants. The effect of cerulenin on the synthesis of medium-and long-chain acids in leaf tissue, Arch. Biochem. Biophys. 167: 655 (1975).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Plenum Press, New York

About this chapter

Cite this chapter

Pollard, M.R., Singh, S.S. (1987). Fatty Acid Synthesis in Developing Oilseeds. In: Stumpf, P.K., Mudd, J.B., Nes, W.D. (eds) The Metabolism, Structure, and Function of Plant Lipids. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5263-1_84

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5263-1_84

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5265-5

  • Online ISBN: 978-1-4684-5263-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics