Skip to main content

The Local Regulation of Bone Remodeling

  • Chapter

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 208))

Abstract

Mounting experimental evidence indicates that skeletal remodeling is under local as well as systemic control. Local environmental factors which may well be significant include mechanical (loading and fluid pressure) and electrical forces, and locally elaborated humoral factors such as prostaglandins, regulatory proteins, and components of the organic matrix. The local ionic milieu and direct cell-cell interactions may also contribute. The effects of systemically elaborated hormones such as parathyroid hormone (PTH) and 1α,25-(OH)2 D3 under physiological conditions may only be permissive, at least under physiological conditions, establishing the proper environment and ensuring an adequate supply of cellular participants for remodeling. High levels of these agents sharply enhance the likelihood of resorption and remodeling. By contrast, local forces seem to be important determinants of the location and frequency of remodeling activity, and may well perpetuate the remodeling cascade so that it proceeds inevitably through an entire coupled sequence of resorption and formation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H.M. Frost, “Mathematical Element of Bone Remodeling,” Charles C. Thomas, Springfield, Illinois (1964).

    Google Scholar 

  2. H.M. Frost, Bone dynamics in metabolic bone disease, J. Bone Joint Surg. 48A:1192 (1 966).

    Google Scholar 

  3. H.M. Frost, The skeletal intermediary organization; a synthesis, in “Bone and Mineral Research/3,” pp. 49–108, W.A. Peck, ed., Elsevier, Amsterdam (1985).

    Google Scholar 

  4. P. Tran Van, A. Vignery, and R. Baron, Cellular kinetics of the bone remodeling sequence in the rat, Anat. Rec. 202: 445 (1982).

    Google Scholar 

  5. P. Tran Van, A. Vignery, and R. Baron, An electron microscopic study of the bone remodeling sequence in the rat, Cell Tissue Res. 225: 283 (1982).

    Article  Google Scholar 

  6. G.A. Rodan and T.J. Martin, Role of osteoclasts in hormonal control of bone resorption - a hypothesis, Calc. Tiss. Int. 33: 349 (1981).

    Article  Google Scholar 

  7. S.S. Miller, A.M. Wolf, and C.D. Arnaud, Bone cells in culture: morphologic transformation by hormones, Science 192: 1340 (1976).

    Article  Google Scholar 

  8. J.D. Malone, S.L. Teitelbaum, G.L. Griffin, R.M. Senior, and A.J. Kahn, Recruitment of osteoclast precursors by purified bone matrix constituents, J. Cell Biol. 92: 227 (1982).

    Article  Google Scholar 

  9. G.R. Mundy and J.W. Poser, Chemotactic activity of the y-carboxyglutamic acid containing protein in bone, Calc. Tiss. Int. 35: 164 (1983).

    Article  Google Scholar 

  10. S. Sakamoto and M. Sakamoto, Isolation and characterization of collagenase synthesized by mouse bone cells in culture, Biomed. Res. 5: 39–46 (1984).

    Google Scholar 

  11. M. Sakamoto and S. Sakamoto, Immunocytochemical localization of collagenase in isolated mouse bone cells, Biomed. Res. 5: 29–38 (1984).

    Google Scholar 

  12. R.L. Jilka and J.W. Hamilton, Evidence for two pathways for stimulation of collagenolysis in bone, Calc. Tiss. Int. 37: 300 (1985).

    Article  Google Scholar 

  13. L.G. Raisz, J.Y. Vanderhoek, H.A. Simmons, B.E. Kream, and K.C. Nicolaou, Prostaglandin synthesis by fetal rat bone in vitro: evidence for a role of prostacyclin, Prostaglandins 17: 905 (1979).

    Article  Google Scholar 

  14. Aubin, J.E., Alders, E., and Heersche, J.N.M. A primary role for micro-filaments but not microtubules in hormone-induced cytoplasmic retraction. Exp. Cell Res. 143: 439 (1983).

    Article  Google Scholar 

  15. S. Sakamoto, M. Sakamoto, P. Goldhaber, and M.J. Glimcher, Collagenase activity and morphological and chemical bone resorption induced by prostaglandin E2 in tissue culture, Proc. Soc. Exp. Biol. Med. 161: 99 (1979).

    Google Scholar 

  16. D.C. Klein and L.G. Raisz, Prostaglandins: stimulation of bone resorption in tissue culture, Endocrinology 86: 1436 (1970).

    Article  Google Scholar 

  17. A.H. Tashjian, Jr., E.L. Hohmann, H.N. Antoniades, and L. Levine, Platelet-derived growth factor stimulates bone resorption via a prostaglandin-mediated mechanism, Endocrinology 111: 118 (1982).

    Article  Google Scholar 

  18. A.H. Tashjian, Jr. and L. Levine, Epidermal growth factor stimulates prostaglandin production and bone resorption in cultured mouse calvaria, Biochem. Biophys. Res. Commun. 85: 966.

    Google Scholar 

  19. K.J. Ibbotson, J. Harrod, M. Gowen, S. D’Souza, M. Winkler, G. Carpenter, R. Derynck, and G.R. Mundy, Effects of human transforming growth factor (TGF)a on bone resorption and formation in vitro, abstract 64 in “Program and Abstracts, Seventh Annual Scientific Meeting of the American Society for Bone and Mineral Research,” Kelseyville, California, Society for Bone and Mineral Research.

    Google Scholar 

  20. T. Yoneda and G.R. Mundy, Monocytes regulate osteoclast-activating factor production by releasing prostaglandins, J. Exp. Med. 150: 338 (1979).

    Article  Google Scholar 

  21. M. Gowen, D.D. Wood, E.J. Ihrie, M.K.B. McGuire, and R.G.G. Russell, An interleukin 1 like factor stimulates bone resorption in vitro, Nature 306: 378 (1983).

    Article  Google Scholar 

  22. J.K. Heath, M.C. Meikle, S.J. Atkinson, and J.J. Reynolds, A factor synthesized by rabbit periosteal fibroblasts stimulates bone resorption and collagenase production by connective tissue cells in vitro, Biochim Biophys. Acta 800: 301 (1984).

    Article  Google Scholar 

  23. G.R. Mundy, Monocyte-macrophage system and bone resorption, Lab. Invest. 49: 119 (1983).

    Google Scholar 

  24. K.J. Ibbotson, G.D. Roodman, L.M. McManus, and G.R. Mundy, Identification and characterization of osteoclast-like cells and their progenitors in cultures of feline marrow mononuclear cells, J. Cell Biol. 99: 471 (1984).

    Article  Google Scholar 

  25. M.J. Pharoah and J.N.M. Heersche, 1,25-Dihydroxyvitamin D3 causes an increase in the number of osteoclastlike cells in cat bone marrow cultures, Calc. Tiss. Int. 37: 276 (1985).

    Article  Google Scholar 

  26. A.J. D’Ercole, G.T. Applewhite, and L.E. Underwood, Evidence that somatomedin is synthesized by multiple tissue in the fetus. Dev. Biol. 75: 315 (1980).

    Article  Google Scholar 

  27. J.R. Farley and D.J. Baylink, Purification of a skeletal growth factor from human bone, Biochemistry 21: 3502 (1982).

    Article  Google Scholar 

  28. J.R. Farley, T. Masuda, J.E. Wergedal, and D.J. Baylink, Human skeletal growth factor: characterization of the mitogenic effect on bone cells in vitro, Biochemistry 21: 3508 (1982).

    Article  Google Scholar 

  29. E. Canalis, W.A. Peck, and L.G. Raisz, Stimulation of DNA collagen synthesis by autologous growth factor in cultured fetal rat calvaria, Science 210: 1021 (1980).

    Article  Google Scholar 

  30. R.T. Turner, J.E. Puzas, M.D. Forte, G.E. Lester, T.K. Gray, G.A. Howard, and D.J. Baylink, In vitro synthesis of lo,25-dihydroxycholecalciferol and 24,25-dihydroxycholecalciferol by isolated calvarial cells, Proc. Natl. Acad. Sci. USA 77:5720 (1980).

    Google Scholar 

  31. L. Rifas, V. Shen, K. Mitchell, and W.A. Peck, Macrophage-derived growth factor for osteoblast-like cells and chondrocytes, Proc. Natl. Acad. Sci. USA 81: 4558 (1984).

    Article  Google Scholar 

  32. V. Shen, L. Rifas, G. Kohler, and W.A. Peck, Fetal rat chondrocytes sequentially elaborate separate growth-and differentiation-promoting peptides during their development in Vitro, Endocrinology 116: 920, 1985.

    Article  Google Scholar 

  33. M. Owen, Lineage of osteogenic cells and their relationship to the stromal system, pp. 1–26, in “Bone and Mineral Research/3,” W.A. Peck, ed., Elsevier, Amsterdam (1985).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Plenum Press, New York

About this chapter

Cite this chapter

Peck, W.A., Rifas, L., Cheng, SL., Shen, V. (1986). The Local Regulation of Bone Remodeling. In: Massry, S.G., Olmer, M., Ritz, E. (eds) Phosphate and Mineral Homeostasis. Advances in Experimental Medicine and Biology, vol 208. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5206-8_32

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5206-8_32

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5208-2

  • Online ISBN: 978-1-4684-5206-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics