Skip to main content

High Energy Phosphates, Phospholipids, and Calcium in Ischemic Renal Tubular Cell Injury

  • Chapter
  • 138 Accesses

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 208))

Abstract

It is becoming increasingly clear that the final common pathogenetic pathway for the development of ischemic acute renal failure is renal tubular cell injury.1,2 Acute renal failure developing from an ischemic insult occurs from tubular cell injury that produces segmental necrosis in renal tubules, so that a patchy distribution of frankly necrotic lesions appears to be the rule rather than the exception in the pathology of acute renal failure.3 The segmental, patchy renal tubular cell necrosis initiates a variety of factors responsible at the nephronal level for excretory failure of the kidney. These factors include intratubular obstruction, backleak of glomerular filtrate, and glomerular hemodynamic alterations. Ultimately, the understanding of the pathogenesis of acute tubular necrosis resides in the understanding of the biochemical alterations responsible for renal tubular cell injury. In this regard, declines in levels of high energy phosphates within the cell, alterations in cellular calcium metabolism, and degradation of membrane phospholipids appear to be metabolic derangements induced by ischemia critical in the evolution of cell injury.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. D. Humes and J. M. Weinberg, Alterations in renal tubular cell metabolism during acute renal failure, Min. Elect. Metab. 9: 290 (1983).

    Google Scholar 

  2. H. D. Humes and J. M. Weinberg, Cellular energetics in acute renal failure, in: “Acute Renal Failure,” B. M. Brenner and J. M. Lazarus, eds., W. B. Saunders, Philadelphia (1983).

    Google Scholar 

  3. J. I. Kriesberg, E. Matthys, and M. A. Venkatachalam, Morphologic factors in acute renal failure, in: “Acute Renal Failure,” B. M. Brenner and J. M. Lazarus, eds., W. B. Saunders, Philadelphia (1983).

    Google Scholar 

  4. D. Hems and J. Brosnan, Effects of ischaemia on content of metabolites in rat liver and kidney in vivo, Biochem. J. 120: 105 (1970).

    Google Scholar 

  5. M. Kahng, I. Berezesky, and B. Trump, Metabolic and ultrastructural response of rat kidney cortex to in vitro ischemia, Exp. Molec. Path. 29: 183 (1978).

    Google Scholar 

  6. H. Osswald, H.J. Schmitz, and R. Kemper, Tissue content of adenosine, inosine and hypoxanthine in the rat kidney after ischemia and postischemic recirculation, Pflugers Arch. 317: 45 (1977).

    Google Scholar 

  7. W. Miller, R. Thomas, R. Berne, and R. Rubio, Adenosine production in the ischemic kidney, Circulation Res. 43: 390 (1978).

    Google Scholar 

  8. N. J. Siegel, W. B. Glazier, I. H. Chaudry, K. M. Gaudio, B. Lytton, A. E. Baue, and M. Kashgarian, Enhanced recovery from acute renal failure by the postischemic infusion of adenine nucleotides and magnesium chloride in rats, Kidney Int. 17: 338 (1980).

    Google Scholar 

  9. K. M. Gaudio, M. R. Taylor, I. H. Chaudry, M. Kashgarian, and N. J. Siegel, Accelerated recovery of single nephron function by the postischemic infusion of ATP-MgC12, Kidney Int. 22: 13 (1982).

    Article  Google Scholar 

  10. K. M. Gaudio, T. A. Ardito, H. F. Reilly, M. Kashgarian, and N. J. Siegel, Accelerated cellular recovery after an ischemic renal injury, Am. J. Pathol. 112: 338 (1983).

    Google Scholar 

  11. H. D. Humes, D. A. Hunt, M. J. Clark, M. D. White, and J. M. Weinberg, Cellular mechanisms of protective maneuvers in nephrotoxic and ischemic acute renal failure, in: “Nephrology,” R. R. Robinson, ed., Springer-Verlag, New Ycrk (1984).

    Google Scholar 

  12. J. M. Weinberg, M. Clark, and H. D. Humes, Effects of exogenous ATP on tubule cell ATP levels, Clin. Res. 32: 459A (1984).

    Google Scholar 

  13. H. D. Humes, Role of calcium in the pathogenesis of acute renal failure, Am. J. Physiol. In press.

    Google Scholar 

  14. J. M. Weinberg, Calcium as a mediator of renal tubule cell injury, Semin. Nephrol. 4: 178 (1984).

    Google Scholar 

  15. F. Schanne, A. Kane, E. Young, and J. Farber, Calcium dependence of toxic cell death: a final common pathway, Science 206: 700 (1979).

    Google Scholar 

  16. H. D. Humes and J. M. Weinberg, Iomphore A23187 induced reductions in toad urinary bladder epithelial cell oxidative phosphorylation and viability, Pflugers Arch. 388: 21 7 (1980).

    Google Scholar 

  17. D. Hunter, R. Haworth, and J. Southard, Relationship between configuration, function, and permeability in calcium-treated mitochondria, J. Biol. Chem. 251: 506 (1976).

    Google Scholar 

  18. D. Pfeiffer, R. Kauffman, and H. Lardy, Effects of N-ethylmaleimide on the limited uptake of Ca++, Mn++, and Sr++ by rat liver mitochondria, J. Biol. Chem. 253: 4165 (1978).

    Google Scholar 

  19. D. Pfeiffer, P. Schmid, M. Beatrice, and H. Schmid, Intramitochondrial phospholipase activity and the effects of Ca++ plus N-ethylmaleimide on mitochondrial function, J. Biol. Chem. 254: 11485 (1979).

    Google Scholar 

  20. T. J. Burke, P. E. Arnold, J. A. Gordon, R. E. Bulger, D. C. Dobyan, and R. W. Schrier, Protective effect of intrarenal calcium membrane blockers before or after renal ischemia: functional, morphological and mitochondrial studies, J. Clin. Invest. 74: 1830 (1984).

    Google Scholar 

  21. C. D. Malis, J. Y. Cheung, L. Alexander, and J. Bonventre, Effects of verapamil in models of ischemic acute renal failure in the rat, Am. J. Physiol. 245: F735 (1983).

    Google Scholar 

  22. S. Singer and G. Nicolson, The fluid mosaic model of the structure of cell membranes, Science 175: 720 (1972).

    Google Scholar 

  23. J. Dahl and L. Hokin, The sodium-potassium adenosine triphosphatase, Ann Rev. Biochem. 43: 327 (1974).

    Article  Google Scholar 

  24. B. Rubalcava and M. Rodbell, The role of acidic phospholipids in glucagon action on rat liver adenylate cyclase, J. Biol. Chem. 248: 3831 (1973).

    Google Scholar 

  25. D. Green, M. Fry, and G. Blondin, Phospholipids as the molecular instruments of ion and solute transport in biological membranes, Proc. Nat. Acad. Sci. USA 77: 257 (1980).

    Google Scholar 

  26. P. Cullis, B. deKruijff, M. Hope, R. Nayar, and S. Schmid, Phospholipids and membrane transport, Can. J. Biochem. 58: 1091 (1980).

    Google Scholar 

  27. L. Jones, S. Cockcroft, and R. Mitchell, Stimulation of phosphatidylinositol turnover in various tissues by cholinergie and adrenergic agonists, by histamine and by coerulein, Biochem. J. 182: 669 (1979).

    Google Scholar 

  28. K. Chien, J. Abrams, A. Serroni, J. Martin, and J. Farber, Accelerated phospholipid degradation and associated membrane dysfunction in irreversible, ischemic liver cell injury, J. Biol. Chem. 253: 4809 (1978).

    Google Scholar 

  29. J. Farber, K. Chien, and S. Mittnacht, The pathogenesis of irreversible cell injury in ischemia, Am. J. Pathol. 102: 271 (1981).

    Google Scholar 

  30. J. Farber, The role of calcium in cell death, Life Sci. 29: 1289 (1981).

    Google Scholar 

  31. K. R. Chien, R. G. Pfau, and J. L. Farber, Ischemic myocardial cell injury: prevention by chlcrpromazine of an accelerated phospholipid degradation and associated membrane dysfunction, Am. J. Pathol. 97: 505 (1979).

    Google Scholar 

  32. V. D. Nguyen, D. A. Hunt, P. A. Weinhold, and H. D. Humes, Injurious effects of exogenous phospholipase on renal proximal tubule segments, KidneyInt. In press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Plenum Press, New York

About this chapter

Cite this chapter

Humes, H.D., Nguyen, V.D., Hunt, D.A. (1986). High Energy Phosphates, Phospholipids, and Calcium in Ischemic Renal Tubular Cell Injury. In: Massry, S.G., Olmer, M., Ritz, E. (eds) Phosphate and Mineral Homeostasis. Advances in Experimental Medicine and Biology, vol 208. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5206-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5206-8_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5208-2

  • Online ISBN: 978-1-4684-5206-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics