Skip to main content

Immunological Approach to Cholinergic Transmission: Production of Monoclonal Antibodies Against Presynaptic Membranes Isolated from the Electric Organ of Torpedo Marmorata

  • Chapter
Dynamics of Cholinergic Function

Part of the book series: Advances in Behavioral Biology ((ABBI,volume 30))

Abstract

The release of the neurotransmitter acetylcholine (ACh) has been thoroughly analyzed with the techniques of electrophysiology. The events taking place at the membrane of the cholinergic nerve endings during ACh release were more recently visualized by morphological analysis of freeze fractured membranes. However, the biochemical basis of the neurotransmitter release is still poorly understood. A major question is which components of the membrane of the cholinergic nerve endings are involved in the release mechanism? One means of identifying some of these components would be to apply the monoclonal antibody strategy (13); in this way, it should be possible to isolate a monoclonal antibody with an exquisite specificity towards a given component. This antibody would then be used as a tool to purify and further characterize the antigen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Benishin, C.G. and Caroll, P.T. (1983): J. Neurochem. 41: 1030–1039.

    Article  Google Scholar 

  2. Burke, B. Griffiths, G., Reggio, H. Louvard, D. and Warren,G. (1982): Embo J., 11: 1621–1628.

    Google Scholar 

  3. Burnette, W.N. (1981): Anal. Biochem. 112: 195–203.

    Article  Google Scholar 

  4. Eder, L., Dunant, Y. and Baumann, M. (1978): J. Neurocytol. 7: 637–647.

    Article  Google Scholar 

  5. Eder-Colli, L., Powell, J.F., Cuello, A.C. and Smith, A.D. (1982): Neurochem. Int. 4: 383–388.

    Article  Google Scholar 

  6. Ellman, G.L., Courtney, K.D., Andres, V. Jr. and Featherstone, R.M. (1961): Biochem. Pharmacol. 7: 88–95.

    Article  Google Scholar 

  7. Galfré, G., Howe, S.C., Milstein, C., Butcher, G.W. and Howard, J.C. (1977): Nature (Lond.) 266: 550–552.

    Article  Google Scholar 

  8. Hawkes, R., Niday, E. and Gordon, J. (1982): Anal. Biochem. 119: 142–147.

    Article  Google Scholar 

  9. Israel, M., Gautron, J. and Lesbats, B. (1970): J. Neurochem. 17: 1441–1450.

    Article  Google Scholar 

  10. Israël, M., Manaranche, R., Mastour-Frachon, P. and Morel, N. (1976): Biochem. J. 160: 113–115.

    Google Scholar 

  11. Itokawa, Y. and Cooper, J.R. (1970): Biochim. Biophys. Acta 75: 274–284.

    Google Scholar 

  12. Johnson, M.K. (1960): Biochem. J. 77: 610–618.

    Google Scholar 

  13. Khler, G. and Milstein, C. (1975): Eur. J. Immunol. 61: 511–519.

    Google Scholar 

  14. Laemmli, U.K. (1970): Nature (Lond.) 227: 680–685.

    Article  Google Scholar 

  15. Lee, S.L., Camp, S.J. and Taylor, P. (1982): J. Biol. Chem. 257: 12302–12309.

    Google Scholar 

  16. Li, Z.Y. and Bon. C. (1983): J. Neurochem. 40: 338–349.

    Article  Google Scholar 

  17. Morel, N. and Dreyfus, P. (1982): Neurochem. Int. 4: 283–288.

    Article  Google Scholar 

  18. Morel, N., Manaranche, R., Israel, M. and Gulik-Krzywicki, T. (1982): J. Cell Biol. 93: 349–356.

    Article  Google Scholar 

  19. Rossier, J., Baumann, A. and Benda, P. (1973): FEBS Lett. 32: 231–234.

    Article  Google Scholar 

  20. Schaffner, W. and Weissmann, C. (1973): Anal. Biochem. 56: 502–514.

    Article  Google Scholar 

  21. Schmidt, J. and Raftery, M.A. (1973): Anal. Biochem. 52: 349–354.

    Article  Google Scholar 

  22. Sobel, A., Weber, M. and Changeux, J.P. (1977): Eur. J. Biochem. 80: 215–224.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Plenum Press, New York

About this chapter

Cite this chapter

Eder-Colli, L., Amato, S. (1986). Immunological Approach to Cholinergic Transmission: Production of Monoclonal Antibodies Against Presynaptic Membranes Isolated from the Electric Organ of Torpedo Marmorata . In: Hanin, I. (eds) Dynamics of Cholinergic Function. Advances in Behavioral Biology, vol 30. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5194-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5194-8_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5196-2

  • Online ISBN: 978-1-4684-5194-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics