Skip to main content

Abstract

Dopaminergic neurotransmission is known to modulate a variety of behaviors, including ambulation (Ungerstedt and Arbuthnott, 1970; Pijnenburg et al., 1976), stereotyped behaviors (Creese and Iversen, 1973), self-stimulation (Phillips and Fibiger, 1973), conditioned avoidance responding (Seiden and Carlsson, 1963), stimulus control (Ho and Huang, 1975), and feeding and drinking (Ungerstedt, 1971; Fitzsimons and Setler, 1975). It is not surprising, therefore, that drugs which are believed to act primarily as dopamine receptor agonists or antagonists have important clinical utility. Our work has sought to address two questions of some neuropharmacological importance. First, what is the nature of mechanisms by which dopamine initiates many of these psychopharmacological effects, and second, is it possible to design highly specific drugs targeted only at a selected subpopulation of dopamine receptors?

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bacopoulos, N.G., 1984, Dopaminergic 3H-agonist receptors in rat brain, New evidence on localization and pharmacology, Life Sci., 34: 307.

    Article  PubMed  CAS  Google Scholar 

  • Bacopoulos, N.G., Brown, S.J., Ware, P.L., and Thron, C.D., 1983, On the mechanism of inhibition of dopamine receptor by fluphenazine, Biochem. Pharmac., 32: 930.

    Article  CAS  Google Scholar 

  • Billard W., Ruperto V., Crosby G., Iorio L.C., and Barnett A., 1984, Characterization of the binding of 3H-SCH 23390, a selective D-1 receptor antagonist ligand, in rat striatum, Life Sci ., 35: 1885.

    Article  PubMed  CAS  Google Scholar 

  • Bockaert, J., Tassin, J.P., Thierry, A.M., Glowinski, J. and Premont, J., 1977, Characteristics of dopamine and beta-adrenergic sensitive adenylate cyclase in the frontal cerebral cortex of the rat. Comparative effects of neuroleptics on frontal cortex and striatal dopamine sensitive adenylate cyclases, Brain Res., 122: 71.

    Google Scholar 

  • Breese, G.R., Mueller, R.A. and Mailman, R.B., 1979, Effect of dopaminergic agonists and antagonists on in vivo cyclic nucleotide content: Relation of guanosine 3’,5’-monophosphate (cGMP) changes in cerebellum to behavior, J. Pharmacol. Exp. Ther., 209: 262.

    PubMed  CAS  Google Scholar 

  • Brown, J.H. and Makman, M.H., 1972, Stimulation by dopamine of adenylate cyclase in retinal homogenates and of adenosine 3’,5’-cyclic monophosphate formation in intact retina, Proc. Nat. Acad. Sci. (U.S.), 69: 539.

    Article  CAS  Google Scholar 

  • Calne, D.B., 1980, Clinical relevance of dopamine receptor classification, Trends Pharmacol. Sci., 3: 412.

    Article  Google Scholar 

  • Christensen, A.V., Arnt, J., Hyttel, J., Larsen, J.-J. and Svendsen, O., 1984, Pharmacological effects of a specific dopamine D1 antagonist SCH23390 in comparison with neuroleptics, Life Sci., 34: 1529.

    Article  PubMed  CAS  Google Scholar 

  • Clement-Cormier, Y.C., Kebabian, J.W., Petzold, G.L. and Greengard, P., 1974, Dopamine-sensitive adenylate cyclase in mammalian brain: A possible site of action of antipsychotic drugs, Proc. Nat. Acad. Sci. (U.S.), 71:1113.

    Article  CAS  Google Scholar 

  • Cohen, B.M., Herschel, M., Miller, E. Mayberg, H. and Baldessarini, R.J., 1980, Radioreceptor assay of haloperidol tissue levels in the rat, Neuropharmacol., 19: 663.

    Article  CAS  Google Scholar 

  • Costentin, J., Dubuc, I. and Protais, P., 1983, Behavioral data suggesting the plurality of central dopamine receptors, in: “CNS Receptors: From Molecular Pharmacology to Behavior”, pp. 289–297. Mandel, P. and DeFeudis, F.V. (eds) Raven Press, New York, 1983.

    Google Scholar 

  • Cotman, C.W., 1974, Isolation of synaptosomal and synaptic plasma membrane fractions, Meth. Enzymol., 31: 445.

    Article  PubMed  CAS  Google Scholar 

  • Creese, I. and Leff, S.E., 1982, Dopamine receptors: A classification, J. Clin. Psychopharmacol., 2:329.

    Article  PubMed  CAS  Google Scholar 

  • Creese, I., Morrow, A.L., Leff, S.E., Sibley, D.R. and Hamblin, M.W., 1982, Dopamine receptors in the central nervous system, Intl. Rev. Neurobiol., 23: 255.

    Article  CAS  Google Scholar 

  • Creese, I., Sibley, D.R., Hamblin, M.W. and Leff, S.E., 1983, The classification of dopamine receptors: relationship to radioligand binding, Annu. Rev. Neurosci., 6: 43.

    Article  PubMed  CAS  Google Scholar 

  • Cross, A.J., Mashal, R.D., Johnson, J.A. and Owen, F., 1983, Preferential inhibition of ligand binding to calf striatal dopamine D1 receptors by SCH 23390, Neuropharmacol., 22: 1327.

    Article  CAS  Google Scholar 

  • Daly, J., 1977, “Cyclic Nucleotides in the Nervous System”. Plenum Press, New York.

    Book  Google Scholar 

  • Daly, J.W., Bruns, R.F. and Snyder, S.H., 1981, Adenosine receptors in the central nervous system: Relationship to the central actions of methylxanthines, Life Sci., 28: 2083.

    Article  PubMed  CAS  Google Scholar 

  • Doss, R.C., Perkins, J.P. and Harden, T.K., 1981, Recovery of beta-adrenergic receptors following long-term exposure of astrocytoma cells to catecholamines, role of protein synthesis, J. Biol. Chem., 251: 12282.

    Google Scholar 

  • Feenstra, M.G.P., Rollema, H., Mulder, T.B.A., DeVries, J.B. and Horn, A.S., 1983b, In vivo dopamine receptor agonist binding in rat brain: Relation with pharmacological effects, Eur. J. Pharmacol., 90: 433.

    Article  PubMed  CAS  Google Scholar 

  • Feenstra, M.G.P., Rollema, H., Mulder, T.B.A., Westerink, B.H.C. and Horn, A.S., 1983a, In vivo dopamine receptor binding of a non-radioactively labelled agonist, dipropyl-5,6-ADTN, Acta Pharm. Sci. Suppl., 2: 203.

    Google Scholar 

  • Feenstra, M.G.P., Rollema, H., Mulder, T.B.A., Westerink, B.H.C. and Horn, A.S., 1983c, In vivo dopamine receptor binding studies with a non-radioactively labelled agonist, dipropyl-5,6-ADTN, Life Sci., 32: 1313.

    Article  PubMed  CAS  Google Scholar 

  • Govoni, S., Yang, H.Y.T., Bosio, A., Pasinetti, G. and Costa, E., 1982, Possible interaction between cholecystokinin and dopamine. in: “Regulatory Peptides: From Molecular Biology to Function”, E. Costa and M. Trabucchi, eds., Raven Press, New York, p. 437.

    Google Scholar 

  • Grabowska-Anden, M., 1977, Modification of amphetamine-induced stereotypy in rats following inhibition of noradrenaline release by FLA-136, J. Pharm. Pharmacol., 29: 566.

    Article  PubMed  CAS  Google Scholar 

  • Greengard, P., 1978, Phosphorylated proteins as physiological effectors, Science, 199: 146.

    Article  PubMed  CAS  Google Scholar 

  • Haidane, J.B.S., 1957, Graphical methods in enzyme chemistry, Nature, 179: 832.

    Article  Google Scholar 

  • Harris, J.E., 1976, Beta adrenergic receptor-mediated adenosine cyclic 3’,5’-monophosphate accumulation in rat corpus striatum, Mol. Pharmacol., 12: 546.

    PubMed  CAS  Google Scholar 

  • Ho, B.T. and Huang, J.T., 1975, Role of dopamine in d-amphetamine-induced discriminative responding, Pharmacol. Biochem. Behav., 3: 1085.

    Article  PubMed  CAS  Google Scholar 

  • Hyttel, J., 1978, Effects of neuroleptics on 3H-haloperidol and 3H-cis(z)-flupenthixol binding and on adenylate cyclase activity in vitro, Life Sci., 23: 551.

    Article  PubMed  CAS  Google Scholar 

  • Hyttel, J., 1983, SCH 23390 — The first selective dopamine D-1 antagonist, Eur. J. Pharmacol., 91: 153.

    Article  PubMed  CAS  Google Scholar 

  • Hyttel, J., 1981, Similarities between the binding of 3H-piflutixol and 3H-flupentixol to rat striatal dopamine receptors in vitro, Life Sci., 28: 563.

    Article  PubMed  CAS  Google Scholar 

  • Iorio, L.C., Barnett, A., Leitz, F.H., Houser, V.P. and Korduba, C.A., 1981, SCH23390, a potential benzazepine antipsychotic with atypical effects on dopaminergic systems, Pharmacologist, 23: 137.

    Google Scholar 

  • Iorio, L.C., Barnett, A., Leitz, F.H., Houser, V.P. and Korduba, C.A., 1983, SCH23390, a potential benzazepine antipsychotic with unique interactions on dopaminergic systems, J. Pharmacol. Exp. Ther., 226: 462.

    Google Scholar 

  • Iversen, L.L., 1975, Dopamine receptors in brain, Science, 188: 1084.

    Article  PubMed  CAS  Google Scholar 

  • Iversen, L.L., Rogawski, M.A. and Miller, R.J., 1976, Comparison of the effects of neuroleptic drugs on pre-and postsynaptic dopaminergic mechanisms in the rat striatum, Mol. Pharmacol., 12: 251.

    PubMed  CAS  Google Scholar 

  • Jorgensen, A.L., Hansen, V., Larsen, U.D. and Khan, A.R., 1969, Metabolism, distribution and excretion of flupenthixol, Acta Pharmacol. et Toxicol., 27: 301.

    Article  CAS  Google Scholar 

  • Kalivas, P.W., Widerlov, E., Stanley, D., Breese, G. and Prange, A.J., 1983, Enkephalin action on the mesolimbic system: A dopamine-dependent and a dopamine-independent increase in locomotor activity, J. Pharmacol. Exp. Ther., 227: 229.

    PubMed  CAS  Google Scholar 

  • Kebabian J.W., Petzold G.L. and Greengard P., 1972, Dopamine-sensitive adenylate cyclase in caudate nucleus of rat and its similarity to the “dopamine receptor”, Proc. Nat. Acad. Sci. (U.S.), 69: 2145.

    Article  CAS  Google Scholar 

  • Kebabian, J.W. and Calne, D.B., 1979, Multiple receptors for dopamine, Nature, 277: 93.

    Article  PubMed  CAS  Google Scholar 

  • Kilts, C.D., Knight, D.L. Mailman, R.B., Widerlov, E. and Breese, G.R., 1984, J. Pharmacol. Exp. Ther. 231: 334.

    PubMed  CAS  Google Scholar 

  • Kilts, C.D., Dew, K.L., Ely, T.D. and Mailman, R.B., 1985, Quantification of SCH23390 [R-(+)-7-chloro-8-hydroxy-1-phenyl-2,3,4,5-tetrahydro-1H-3-methyl-3-benzazepine] in brain and blood by use of reverse phase HPLC with electrochemical detection, J. Chromatog., 432: 452.

    Google Scholar 

  • Laduron, P.M., Verwimp, M., Janssen, P.F.M, and Leysen, J.E., 1976, Subcellular localization of dopamine-sensitive adenylate cyclase in rat brain striatum. Life Sci., 18: 433.

    Article  PubMed  CAS  Google Scholar 

  • Laduron, P.M., 1983, Commentary: Dopamine-sensitive adenylate cyclase as a receptor site, in: “Dopamine Receptors”, Kaiser, C and Kebabian, J.W., eds., p. 22. American Chemical Society, Washington, D.C.

    Google Scholar 

  • Laduron, P.M., Janssen, P.F.M. and Ilien, B., 1983, Analytical subcellular fractionation of rat cortex: Resolution of serotonergic nerve endings and receptors, J. Neurochem., 41: 84.

    Article  PubMed  CAS  Google Scholar 

  • Lewis, M.H., Widerlov, E., Knight, D.L., Kilts, C.D. and Mailman, R.B., 1983, N-oxides of phenothiazine antipsychotics: effects on in vivo and in vivo dopaminergic function, J. Pharmacol. Exp. Ther., 225: 539.

    PubMed  CAS  Google Scholar 

  • Leysen J.E., Gommeren W. and Laduron P.M., 1978, Spiperone: a ligand of choice for neuroleptic receptors. 1. Kinetics and characteristics of in vitro binding, Biochem. Pharmacol., 27:307.

    Article  PubMed  CAS  Google Scholar 

  • Leysen, J.E. and Gommeren, W., 1981, Optimal conditions for 3H-apomorphine binding and anomalous equilibrium binding of 3H-apomorphine and 3H-spiperone to rat striatal membranes: Involvement of surface phenomena versus multiple binding sites, J. Neurochem., 36: 201.

    Article  PubMed  CAS  Google Scholar 

  • Leysen J.E., Gommeren W. and Laduron P.M., 1979, Distinction between dopaminergic and serotonergic components of neuroleptic binding sites in limbic brain areas, Biochem. Pharmacol., 28: 447.

    Article  PubMed  CAS  Google Scholar 

  • Mailman, R.B., Rollema, H., Schulz, D.W., DeHaven, D.L. and Lewis, M.H., 1984a, Dopamine receptor multiplicity: when the D-1 antagonist is a D-2 antagonist, Fed. Proc., 43: 1095.

    Google Scholar 

  • Mailman, R.B., Schulz, D.W., Lewis, M.H., Staples, L., Rollema, H. and DeHaven, D.L., 1984b, SCH-23390: A selective D-1 dopamine antagonist with potent D-2 behavioral actions, Eur. J. Pharmacol., 101: 159.

    Article  PubMed  CAS  Google Scholar 

  • Mailman, R.B. Schulz, D. W., Kilts, C.D., Lewis, M.H., Rollema, H., Wyrick, S., 1986, Multiple forms of the D1 dopamine receptor: its linkage to adenylate cyclase and psychopharmacological effects. Psychopharmacol. Bull., (in press).

    Google Scholar 

  • Miller, R.J., 1975, Comparison of the inhibitory effects of neuroleptic drugs on adenylate cyclase in rat tissues stimulated by dopamine, noradrenaline, and glucagon, Biochem. Pharmacol., 25: 537.

    Article  Google Scholar 

  • Miller, R.J., Horn, A.S. and Iversen, L.L., 1974, Effects of dopamine-like drugs on rat striatal adenyl cyclase have implications for CNS dopamine receptor topography. Nature, 250: 238.

    Article  PubMed  CAS  Google Scholar 

  • Mogilnicka, E. and Braestrup, C., 1976, Noradrenergic influence on the stereotyped behavior induced by amphetamine, phenylethylamine and apomorphine, J. Pharm. Pharmacol., 28: 253.

    Article  PubMed  CAS  Google Scholar 

  • Napier, T,C., Givens, B.S., Schulz, D.W., Bunney, B.S., Breese, G.R. and Mailman, R.B., 1986, SCH23390 effects on apomorphine-induced responses of nigral dopaminergic neurons, J. Pharmacol. Exp. Ther., (in press)

    Google Scholar 

  • Nemeroff, C.B., Luttinger, D., Hernandez, D.E., Mailman, R.B., Mason, G.A., Davis, S.D., Frye, G.D., Beaumont, K., Breese, G.R. and Prange, A.J., 1983, Interactions of neurotensin with brain dopamine systems: biochemical and behavioral studies, J. Pharmacol. Exp. Ther., 225: 337.

    PubMed  CAS  Google Scholar 

  • Niedzwiecki, D.N., Mailman, R.B. and Cubeddu, L.X., 1984, Greater potency for mesoridazine and sulforidazine than thioridazine on striatal dopamine autoreceptors, J. Pharmacol. Exp. Ther., 228: 686.

    Google Scholar 

  • O’Boyle, K.M., Molloy, A.G., and Waddington, J.L., 1984, Benzazepine derivatives: Nature of the selective and stereospecific interactions of SK&F 38393 and SCH 23390 with brainD-1 receptors, in: “Dopamine Systems and their Regulation”, G.N. Woodruff, ed., McMillan Press, London.

    Google Scholar 

  • Palkovits, M., 1973, Isolated removal of hypothalamic or other brain nuclei of the rat, Brain Res., 59: 449.

    Article  PubMed  CAS  Google Scholar 

  • Palmer G.C., Sulser F., and Robison G.A., 1973, Effects of neurohumoral and adrenergic agents on cyclic AMP levels in various areas of the rat brain in vitro, Neuropharmacol., 12: 327.

    Article  CAS  Google Scholar 

  • Phillips, A.G. and Fibiger, H.C., 1973, Dopaminergic and noradrenergic substrates of positive reinforcement: Differential effects of d- and 1-amphetamine, Science, 179: 575.

    Article  PubMed  CAS  Google Scholar 

  • Pijnenburg, A.J.J., Honig, W.M.M., Van der Heyden, J.A.M., and Van Rossum, J.M., 1976, Effects of chemical stimulation of the mesolimbic dopamine system upon locomotor activity, Eur. J. Pharmacol., 35: 45.

    Article  PubMed  CAS  Google Scholar 

  • Rollema, H., Feenstra, M.G.P., Grol, C.J., Lewis, M.H., Staples, L. and Mailman, R.B., 1986, (-)-Dipropyl-5,6-ADTN as an in vivo dopamine receptor ligand: relation between displacement by dopamine agonists and their pharmacological effects. Naunyn-Schmiedeberg’s Arch. Pharmacol., (in press).

    Google Scholar 

  • Quik M., Emson P.C. and Joyce E., 1979, Dissociation between the presynaptic dopamine-sensitive adenylate cyclase and [3H]-spiperone binding sites in rat substantia nigra, Brain Res., 167: 355.

    Article  PubMed  CAS  Google Scholar 

  • Scatchard, G., 1949, The attraction of proteins for small molecules, Ann. N.Y. Acad. Sci., 51: 660.

    Article  CAS  Google Scholar 

  • Schmidt, M.J. and Hill, L.E., 1977, fects of ergots on adenylate cyclase activity in the corpus striatum and pituitary. Life Sci.,20: 789.

    Article  PubMed  CAS  Google Scholar 

  • Schulz, D.W. and Mailman, R.B., 1984, An improved, automated adenylate cyclase assay utilizing preparative HPLC: Effects of phosphodiesterase inhibitors, J. Neurochem., 42: 764.

    Article  PubMed  CAS  Google Scholar 

  • Schulz, D.W., Lewis, M.H., Petitto, J. and Mailman, R.B., 1984a, Ascorbic acid decreases [3H]-dopamine binding in striatum without inhibiting dopamine-sensitive adenylate cyclase, Neurochem. Int., 6: 117.

    Article  PubMed  CAS  Google Scholar 

  • Schulz, D.W., Wyrick, S.D., and Mailman, R.B. 1984b. [3H]- SCH23390 has the characteristics of a dopamine receptor ligand in the rat central nervous system, Eur. J. Pharmacol., 106: 211.

    Article  PubMed  CAS  Google Scholar 

  • Schulz, D.W., Staples, L.J. and Mailman, R.B., 1985a, SCH23390 causes persistent antidopaminergic effects in vivo: evidence in longterm occupation of receptors. Life Sci. 36: 1941.

    Article  PubMed  CAS  Google Scholar 

  • Schulz, D.W., Stanford, E.J., Wyrick, S.B. and Mailman, R.B. 1985b. Binding of [3H]SCH23390 in rat brain: regional distribution, inhibition by competing ligands, and effects of assay conditions suggest interactions at D1-like dopamine receptors. J. Neurochem., 45: 1601.

    Article  PubMed  CAS  Google Scholar 

  • Schwarcz, R., Creese, I. and Coyle, J.T., 1978, Dopamine receptors localized on cerebral cortical afferents to rat corpus striatum, Nature 271: 766.

    Article  PubMed  CAS  Google Scholar 

  • Seeman, P., Chau-Wong, M., Tedesco, J., and Wong, K., 1975, Brain receptors for antipsychotic drugs and dopamine: Direct binding assays. Proc. Nat. Acad. Sci. (U.S.A.), 72: 4376.

    Article  CAS  Google Scholar 

  • Seiler, M.P. and Markstein, R., 1984, Further characterization of structural requirements for agonists at the striatal dopamine D2 receptor and a comparison with those at the striatal dopamine D1 receptor. Studies with a series of monohydroxyaminotetralins on acetylcholine release from rat striatum, Mol. Pharmacol., 26: 452.

    PubMed  CAS  Google Scholar 

  • Smith, M.M. and Harden, T.K., 1984, Modification of receptor-mediated inhibition of adenylate cyclase in NG108–15 neuroblastoma x glioma cells by N-ethylmaleimide, J. Pharmacol. Exp. Ther., 228: 425.

    PubMed  CAS  Google Scholar 

  • Snyder, S.H., 1976, The dopamine hypothesis of schizophrenia: focus on the dopamine receptor, Amer. J. Psychiatry, 133: 197.

    CAS  Google Scholar 

  • Snyder, S.H., Creese, I. and Burt, D.R., 1975, The brain’s dopamine receptor: Labeling with [3H]-dopamine and [3H]-haloperidol, Psychopharmacol. Commun., 1:663.

    PubMed  CAS  Google Scholar 

  • Snyder, S.H., Katims, J.J., Annau, Z., Bruns, R.F. and Daly, J.W., 1981, Adenosine receptors and behavioral action of methylxanthines, Proc. Natl. Acad. Sci. (U.S.), 78: 3260.

    Article  CAS  Google Scholar 

  • Trabucchi, M., Spano, P.F., Tonon, G.C., and Frattola, L., 1976, Effects of bromocriptine on central dopaminergic receptors, Life Sci., 19: 225.

    Article  PubMed  CAS  Google Scholar 

  • Ungerstedt, U. and Arbuthnott, G.W., 1970, Quantitative recording of rotational behavior of rats after 6-hydroxy-dopamine lesions of the nigrostriatal dopamine system, Brain Res., 24: 485.

    Article  PubMed  CAS  Google Scholar 

  • Vance, M.A. and Blumberg, J.B., 1983, Effect of catecholamines on locomotor activity and cyclic AMP in nucleus accumbens in rats, J. Pharm. Pharmacol., 35: 402.

    Article  PubMed  CAS  Google Scholar 

  • Widerlov, E., Kilts, C.D., Mailman, R.B., Nemeroff, C.B., Prange, A.J. and Breese, G.R., 1982, Increase in dopamine metabolites in rat brain by neurotensin, J. Pharmacol. Exp. Ther., 223: 1.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Plenum Press, New York

About this chapter

Cite this chapter

Mailman, R.B., Schulz, D.W., Kilts, C.D., Lewis, M.H., Rollema, H., Wyrick, S. (1986). The Multiplicity of the D1 Dopamine Receptor. In: Breese, G.R., Creese, I. (eds) Neurobiology of Central D1-Dopamine Receptors. Advances in Experimental Medicine and Biology, vol 204. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5191-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5191-7_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5193-1

  • Online ISBN: 978-1-4684-5191-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics