Skip to main content

Neurobiology of D1 Dopamine Receptors after Neonatal-6-OHDA Treatment: Relevance to Lesch-Nyhan Disease

  • Chapter
Neurobiology of Central D1-Dopamine Receptors

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 204))

Abstract

Central administration of 6-hydroxydopamine (6-OHDA) to adult or neonatal rats destroys dopamine-containing neurons, produces a variety of behavioral deficits (Breese et al., 1973; Smith et al., 1973) and enhances behavioral responses to dopamine agonists (Ungerstedt, 1971; Schoenfeld and Uretsky, 1972; Hollister et al., 1974; 1979; Setler et al. 1978; Kilts et al. 1979). In spite of the common biochemical deficiency observed in neonatally and adult-lesioned rats, Breese et al. (1984 a,b) reported that certain behavioral responses to L-DOPA or apomorphine in adult-6-OHDA-treated rats (Breese et al., 1970) differ from those observed in rats lesioned as neonates and tested with dopamine agonists as adults (Breese et al., 1972; Smith et al., 1973). For example, neonatally 6-OHDA-lesioned rats exhibit self-mutilation behavior (SMB) after treatment with dopamine agonists which do not elicit this response in adult-6-OHDA treated rats (Breese et al., 1984b).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arnt, J., 1985, Hyperactivity induced by stimulation of separate D1 and D2 receptors in rats with bilateral 6-OHDA lesions, Life Sci., 37:717–723.

    Article  PubMed  CAS  Google Scholar 

  • Arnt, J., and Hyttel, J., 1984, Differential inhibition by dopamine D1 and D2 antagonists of circling behavior induced by dopamine agonists in rats with unilateral 6-hydroxydopamine lesions, Europ. J. Pharmacol., 102:349–354.

    Article  CAS  Google Scholar 

  • Bevan, P., 1983, Repeated apomorphine treatment causes behavioral supersensitivity and dopamine D2 receptor hyposensitivity, Neurosci. Letter, 35:185–189.

    Article  CAS  Google Scholar 

  • Billard, W., Ruperto, V., Crosby, G., Iorio, L.C., and Barnett, A., 1984, Characterization of the binding of 3H-SCH 23390, a selective D1 receptor antagonist ligand, in rat striatum, Life Sci., 35:1885–1893.

    Article  PubMed  CAS  Google Scholar 

  • Breese, G.R. and Traylor, T.D. Effects of 6-hydroxydopamine on brain norepinephrine and dopamine: Evidence for selective degeneration of catecholamine neurons, 1970, J. Pharmacol. Exp. Ther., 174:413–420. .

    PubMed  CAS  Google Scholar 

  • Breese, G.R., and Traylor, T.D., 1972, Developmental characteristics of brain catecholamines and tyrosine hydroxylase in the rats: Effects of 6-hydroxydopamine, Brit. J. Pharmacol., 44:210–222.

    Google Scholar 

  • Breese, G.R., Baumeister, A.A., McCown, T.J., Emerick, S.G., Frye, G.D. and Mueller, R.A., 1984a, Neonatal-6-hydroxydopamine: Model of susceptibility for self-mutilation in the Lesch-Nyhan Syndrome, Pharmacol. Biochem. Behav., 21:459–461.

    Article  PubMed  CAS  Google Scholar 

  • Breese, G.R., Baumeister, A.A., McCown, T.J., Emerick, S.G., Frye, G.D., Crotty, K., and Mueller, R.A., 1984b, Behavioral differences between neonatal and adult-6-hydroxydopamine-treated rats to dopamine agonists: Relevance to neurological symptoms in clinical syndromes with reduced brain dopamine, J. Pharmacol. Exp. Ther., 231:343–354.

    PubMed  CAS  Google Scholar 

  • Breese, G.R., Baumeister, A., Napier, T.C., Frye, G.D., and Mueller, R.A., 1985a, Evidence that D1 dopamine receptors contribute to the supersensitive behavioral responses induced by L-dihydroxyphenylalanine in rats treated neonatally with 6-hydroxydopamine, J. Pharmacol. Exp. Ther., 235:287–295.

    PubMed  CAS  Google Scholar 

  • Breese, G.R., Cooper, B.R. and Smith, R.D., 1973, Biochemical and behavioral alterations following 6-hydroxydopamine administration into brain. In: “Frontiers in Catecholamine Research”, Usdin, E. and Snyder, S. (Eds.). Pergamon Press, pp. 701–706.

    Google Scholar 

  • Breese, G.R. and Mueller, R.A., 1985, SCH 23390 antagonism of a D2 dopamine agonist depends upon catecholaminergic neurons, Europ. J. Pharmacol., 113:109–114.

    Article  CAS  Google Scholar 

  • Breese, G.R., Mueller, R.A., and Mailman, R.B., 1979, Effects of dopaminergic agonists and antagonists on in vivo cyclic nucleotide content: Relation of guanosine 3’5’-monophosphate (cGMP) changes in cerebellum to behavior, J. Pharmacol. Exp. Ther., 209:262–270.

    PubMed  CAS  Google Scholar 

  • Breese, G.R., Napier, T.C., and Mueller, R.A., 1985c, Dopamine agonist-induced locomotor activity in rats treated with 6-hydroxydopamine at differing ages: Functional supersensitivity of D1 dopamine receptors in neonatally lesioned rats, J. Pharmacol Exp. Ther., 234:447–455.

    PubMed  CAS  Google Scholar 

  • Breese, G.R., McCown, T.J., Baumeister, A.A., Emerick, S.G., Frye, G.D. and Mueller, R.A., 1984c, L-DOPA induced self-biting in rats treated with 6-hydroxydopamine as neonates: Model of self-mutilation observed in Lesch-Nyhan syndrome, Fed. Proc., 43:928.

    Google Scholar 

  • Christensen, A.V., Arnt, J., Hyttel, J., Larson, J.J., and Svendsen, O., 1984, Pharmacological effects of a specific dopamine D1 antagonist SCH 23390 in comparison with neuroleptics, Life Sci., 34:1529–1540.

    Article  PubMed  CAS  Google Scholar 

  • Claveria, L.E., Teychenne, P.F., Calne, D.B., Petrie, A. and Bassendine, M.F., 1975, Dopaminergic agonists in Parkinsonism, Adv. Neurol., 9:393–397.

    Google Scholar 

  • Cooper, B.R., Breese, G.R., Grant, L.D., and Howard, J.J., 1973, Effects of 6-hydroxydopamine treatments on active avoidance responding: Evidence for involvement of brain dopamine, J. Pharmacol. Exp. Ther., 185:358–370.

    PubMed  CAS  Google Scholar 

  • Costall, B., Kelley, M.E., and Naylor, R.J., 1984, Unilateral striatal denervation: Reduced motor inhibitory effects of dopamine antagonists revealed in models of asymmetric and circling behavior, Nauyn-Schmeideberg’s Arch. Pharmacol., 326:29–35.

    Article  CAS  Google Scholar 

  • Costall, B., Naylor, R.J., and Neumeyer, J.L., 1975, Differences in the nature of the stereotyped behavior by apomorphine derivatives in the rat and in their actions in extrapyramidal and mesolimbic brain areas, Europ. J. Pharmacol., 31:1–16.

    Article  CAS  Google Scholar 

  • Creese, I., Burt, D.R., and Snyder, S.H., 1977, Dopamine receptor binding enhancement accompanies lesion-induced behavioral supersensitivity, Science, 197:596–598.

    Article  PubMed  CAS  Google Scholar 

  • Goldstein, M., Anderson, L.T., Reuben, R. and Dancis, J., 1985, Self-mutilation in Lesch-Nyhan disease is caused by dopaminergic denervation, Lancet, 1:338–339.

    Article  PubMed  CAS  Google Scholar 

  • Goldstein, M., Lew, T.Y., Asano, T., and Weta, K., 1980, Alterations in dopamine receptors. Effects of lesions and haloperidol treatment, Comm. Psychopharm., 4:21–25.

    CAS  Google Scholar 

  • Heikkila, R.E., Shapiro, B.S., and Duvoisin, R.C., 1981, The relationship between loss of dopamine nerve terminals, striatal (3H)-spiroperidol binding and rotational behavior in unilaterallly 6-hydroxydopamine-lesioned rats, Brain Res., 211:285–292.

    Article  PubMed  CAS  Google Scholar 

  • Herrera-Marschitz, M., and Ungerstedt, U., Evidence that striatal efferents relate to different dopamine receptors, Brain Res., 323:269–278.

    Google Scholar 

  • Hollister, A.S., Breese, G.R., and Cooper, B.R., 1974, Comparison of tyrosine hydroxylase and dopamine-β-hydroxylase inhibition with the effects of various 6-hydroxydopamine treatments on d-amphetamine induced motor activity, Psychopharmacologia, 36:1–16.

    Article  PubMed  CAS  Google Scholar 

  • Hollister, A.S., Breese, G.R., and Mueller, R.A., 1979, Role of monoamine neural systems in L-dihydroxyphenylalanine stimulated activity, J. Pharmacol. Exp. Ther., 208:37–43.

    PubMed  CAS  Google Scholar 

  • Hornykiewicz, O., 1973, Parkinson’s disease: From brain homogenate to treatment, Fed. Proc, 32:183–190.

    PubMed  CAS  Google Scholar 

  • Hyttel, J., 1978, A comparison of the effect of neuroleptic drugs on the binding of 3H-haloperidol and 3H-(Z)-flupentixol and an adenylate cyclase activity in rat striatal tissue in vitro, Prog. Neuro-Psychopharmacol., 2:329–335.

    Article  CAS  Google Scholar 

  • Iorio, L.C., Barnett, A., Leitz, F.H., Houser, V.P., and Korduba, A., 1983, SCH-23390, a potential benzazepine antipsychotic with unigue interactions on dopaminergic systems, J. Pharmacol. Exp. Ther., 226:462–468.

    PubMed  CAS  Google Scholar 

  • Jackson, D.M., Anden, N-E. and Dahlstrom, A., 1975, A functional effect of dopamine in the nucleus accumbens and in some dopamine-rich areas of the rat brain, Psychopharmacologia, 45:139–149.

    Article  PubMed  CAS  Google Scholar 

  • Kebabian, J.W., and Calne, D.B., 1979, Multiple receptors for dopamine, Nature (Lond)., 227:93–96.

    Article  Google Scholar 

  • Kelley, W.N. and Wyngaarden, T.B., 1983, Clinical syndromes associated with hypoxanthine-guanine-phosphoribosyl-transferase deficiency. In: “Metabolic Basis of Inherited Disease”, edited by Stanberry et al. New York: McGraw Hill, pp. 1115–1143.

    Google Scholar 

  • Kilts, C.D., Smith, D.A., Ondrusek, M.G., Mailman, R.B., Mueller, R.A., and Breese, G.R., 1979, Differential effects of “Dopaminergic agonists” on measures of dopaminergic function, Soc. Neurosci. Abst., 5:562.

    Google Scholar 

  • Klawans, W.L., Paulson, G.W., Ringel, S.P. and Barbeau A., 1972, Use of L-DOPA in the detection of prof L-DOPA in the detection of presymptomatic Hungtington’s chorea, N. Engl. J. Med., 286:1332–1334.

    Article  PubMed  Google Scholar 

  • Klawans, H.L., Hitri, A., Carvey, P.M., Nausieda, P.A. and Weiner, W.J., 1979, Effect of chronic dopaminergic agonism on striatal membrane dopamine binding, Adv. Neurol., 24:217–224.

    CAS  Google Scholar 

  • Koller, W.C., Cortin, J.C., and Fields, J.Z., 1984, Pergolide down-regulates D2 dopamine receptors but fails to block haloperidol induced behavioral supersensitivity, Society Neurosci. Abst., 10:1136.

    Google Scholar 

  • Laduron, P.M., 1983, Commentary: Dopamine-sensitive adenylate cyclase as a receptor site, In: “Dopamine Receptors” (ed. C. Kaiser and T.W. Kebabian), Am. Chem. Soc. (Washington, D.C.) pp. 22–28.

    Google Scholar 

  • Lesch, M. and Nyhan, W.L., 1964, A familial disorder of uric acid metabolism and central nervous system function, Am. J. Med., 36:561–570.

    Article  PubMed  CAS  Google Scholar 

  • Lloyd, K.G., Hornykiewicz, O., Davidson, L., Shannak, K., Farley, I., Goldstein, M., Shibuya, M., Kelley, W.N., and Fox, I.H., 1981, Biochemical evidence of dysfunction of brain neurotransmitters in the Lesch-Nyhan syndrome, N. Eng. J. Med., 305:1106–1111.

    Article  CAS  Google Scholar 

  • Mailman, R.B., Kilts, C.D., Beaumont, K., and Breese, G.R., 1981, “Supersensitivity” of dopamine systems: Comparisons between haloperidol withdrawal, intracisternal and unilateral 6-hydroxydopamine (6-OHDA) treatments, Fed Proc., 40:291.

    Google Scholar 

  • Mailman, R.B., Towle, A., Schulz, D.W., Lewis, M.H., Breese, G.R., DeHaven, D.H., and Krigman, M.R., 1983, Neonatal 6-OHDA treatment of rats: Changes in dopamine (DA) receptors, striatal neurochemistry and anatomy, Soc. Neurosci. Abstr., 9:932.

    Google Scholar 

  • Mailman, R.B., Schulz, D.W., Lewis, M.H., Staples, L. Rollema, H. and DeHaven, D.L., 1984, SCH 23390: A selective D1 dopamine antagonist with potent D-2 behavioral actions, Europ. J. Pharmacol., 101:159–160.

    Article  CAS  Google Scholar 

  • Molloy, A.G. and Waddington, T.L., 1984, Dopaminergic behavior stereospecifically promoted by the D1 agonist R- SK & F 38393 and selectively blocked by the D1 antagonist SCH 23390, Psychopharmacology, 82:409–410.

    Article  PubMed  CAS  Google Scholar 

  • Neve, K.A., Altar, C.A., Wong, C.A., and Marshall, T.F., 1984, Quantitative analysis of (3H) spiroperidol binding to rat forebrain sections: Plasticity of neostriatal dopamine receptors after nigrostriatal injury, Brain Res., 302:9–18.

    Article  PubMed  CAS  Google Scholar 

  • Onali, P., Olianas, M. and Gessa, G.L., 1985, Characterization of dopamine receptors mediating inhibition of adenylate cyclase activity in rat striatum, Mol. Pharmacol., 28:138–145.

    PubMed  CAS  Google Scholar 

  • Pijnenburg, A.J.J., Honig, W.M.M., Van Der Heyden, J.A.M., and Van Rossum, J.M., 1976, Effects of chemical stimulation of the mesolimbic dopamine system upon locomotor activity, Europ. J. Pharmacol., 35:45–58.

    Article  CAS  Google Scholar 

  • Robinson, T.E., 1984, Behavioral sensitization: Characteristics of enduring changes in rotational behavior produced by intermittent injections of amphetamine in male and female rats, Psychopharmacology, 84:466–475.

    Article  PubMed  CAS  Google Scholar 

  • Schoenfeld, R., and Uretsky, N., 1972, Altered response to apomorphine in 6-hydroxydopamine-treated rats, Europ. J. Pharmacol., 19:115–118.

    Google Scholar 

  • Seeman, P., 1980, Brain dopamine receptors, Pharmacol. Rev., 32:229–313.

    PubMed  CAS  Google Scholar 

  • Setler, P.E., Sarau, H.M., Zirkle, CL., and Saunders, H.L., 1978, The central effects of a novel dopamine agonist, Europ. J. Pharmacol., 50:419–430.

    Article  CAS  Google Scholar 

  • Smith, R.D., Cooper, B.R., and Breese, G.R., 1973, Growth and behavioral changes in developing rats treated intracisternally with 6-hydroxydopamine: Evidence for involvement of brain dopamine, J. Pharmacol. Exp. Ther., 185:609–619.

    Google Scholar 

  • Staunton, D.A., Wolfe, B.B., Groves, P.M., and Molinoff, P.B., 1981, Dopamine receptor changes following destruction of the nigrostriatal pathway: Lack of a relationship to rotation behavior, Brain Res., 211:315–327.

    Article  PubMed  CAS  Google Scholar 

  • Tsuruta, K., Frey, E.A., Grewe, C.W., Cote, T.E., Eskay, R.L., and Kebabian, T.W., 1981, Evidence that LY-141865 specifically stimulates the D2 dopamine receptor, Nature (Lond), 292:463–465.

    Article  CAS  Google Scholar 

  • Ungerstedt, U., 1971, Postsynaptic supersensitivity after 6-hydroxydopamine induced degeneration of the nigrostriatal dopamine system, Acta Physiol. Scand., Supplement367, pp. 69–93.

    CAS  Google Scholar 

  • Walaas, S.I., Aswad, D.W., and Greengard, P., 1983, A dopamine and cyclic AMP-regulated phosphoprotein enriched in dopamine-innervated brain regions, Nature, 301:69–71.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Plenum Press, New York

About this chapter

Cite this chapter

Breese, G.R., Mueller, R.A., Napier, T.C., Duncan, G.E. (1986). Neurobiology of D1 Dopamine Receptors after Neonatal-6-OHDA Treatment: Relevance to Lesch-Nyhan Disease. In: Breese, G.R., Creese, I. (eds) Neurobiology of Central D1-Dopamine Receptors. Advances in Experimental Medicine and Biology, vol 204. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5191-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5191-7_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5193-1

  • Online ISBN: 978-1-4684-5191-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics