Skip to main content

Calcium Entry Blockers Protect Brain Energy Metabolism Against Ischemic Damage

  • Chapter
Oxygen Transport to Tissue VIII

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 200))

Abstract

Under physiological conditions the intracellular calcium ion activity is regulated at a level several orders of magnitude lower than that of the extracellular space. However, under the conditions of energy failure the cytosolic Ca2+ concentration increases markedly. The reasons for this are the opening of the voltage-dependent calcium channels within the plasma membrane, the release of Ca2+ from the ATP-dependent sites of sequestration in the endoplasmatic reticulum and the impaired ability of mitochondria to accumulate calcium. The resulting increase in free cytosolic calcium activity disrupts a variety of cellular functions and, in particular, may be responsible in part for the breakdown of membrane phospholipids.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andjus, R., Suhara, K., and Sloviter, H.A., 1967, An isolated, perfused rat brain preparation, its spontaneous and stimulated activity, J. Appl. Physiol. 22: 1033.

    Google Scholar 

  • Atkinson, D.E., 1968, The energy charge of the adenylate pool as a regulatory parameter. Interaction with feedback modifiers, Biochemistry 7: 4030.

    CAS  Google Scholar 

  • Bergmeyer, H.U., 19/0, “Methoden der enzymatischen Analyse”, Verlag Chemie, Weinheim.

    Google Scholar 

  • Folbergrova, J., Pontén, U., and Siesjö, B.K., 1974, Patterns of changes in brain carbohydrate metabolites, amino acids and organic phosphates at increased carbon dioxide tensions

    Google Scholar 

  • J Neurochem., 22: 1115.

    Google Scholar 

  • Freedman, S.B., Dawson, G., Villereal, M.L., and Miller, R.J., 1984, Identification and characterization of voltage-sensitive calcium channels in neuronal clonal cell lines, J. Neurosci. 4: 1453.

    PubMed  CAS  Google Scholar 

  • Hanke, J. and Krieglstein J., 1982, Über die Mechanismen der protektiven Wirkung von Methohexital auf den zerebralen

    Google Scholar 

  • Energiestoffwechsel, Arzneimittel-Forsch. 32: 620.

    Google Scholar 

  • Kopp, S.J., Krieglstein, J., Freidank, A., Rachman, A., Seibert, A., and Cohen, M.M., 1984, P-31 Nuclear magnetic resonance analysis of brain. II. Effects of oxygen deprivation on isolated perfused and nonperfused rat brain.

    Google Scholar 

  • J. Neurochem. 43: 1716.

    Google Scholar 

  • Krieglstein, J., 1985, An isolated rat brain preparation perfused with a fluorocarbon emulsion, in: “Oxygen Transport to Tissue - VI”, D. Bruley, H.J. Bicher, and D. Reneau, eds., Plenum Publishing Corporation, New York and London.

    Google Scholar 

  • Krieglstein, J. and Stock, R., 1974, The isolated perfused rat brain as a model for studying drugs acting on the

    Google Scholar 

  • CNS, Psychopharmacology (Berlin) 35: 169.

    Google Scholar 

  • Krieglstein, G., Krieglstein, J., and Stock, R., 1972, Suitability of the isolated perfused rat brain for studying effects on cerebral metabolism, Naunyn-Schmiedeberg’s Arch. Pharmacol. 275: 124.

    Google Scholar 

  • Krieglstein, J., Dirks, B., and Hanke, J., 1981, Energy metabolism in isolated rat brain, in: “Animal Models and Hypoxia”, V. Stefanovich, ed., Pergamon Press, Oxford.

    Google Scholar 

  • Lowry, O.H. and Passonneau, J.V., 1972, “A Flexible System of Enzymatic Analysis”, Academic Press, New York.

    Google Scholar 

  • Rachman, A., Kellmann, L., and Krieglstein, J., 1984, Effect of dihydroergocristine on energy metabolism in the isolated rat brain affected by ischemia and in neuroblastoma cells deprived of oxygen and glucose, J. Cereb. Blood Flow Metab. 4: 610.

    Google Scholar 

  • Siesjö, B.K., 1978, “Brain Energy Metabolism”, John Wiley and Sons, New York.

    Google Scholar 

  • Siesjö, B.K., 1981, Cell damage in the brain: A speculative

    Google Scholar 

  • synthesis, J. Cereb. Blood Flow Metab. 1: 155. Spedding, M., 1985, Calcium antagonist subgroups

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Plenum Press, New York

About this chapter

Cite this chapter

Krieglstein, J., Weber, J. (1986). Calcium Entry Blockers Protect Brain Energy Metabolism Against Ischemic Damage. In: Longmuir, I.S. (eds) Oxygen Transport to Tissue VIII. Advances in Experimental Medicine and Biology, vol 200. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5188-7_31

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5188-7_31

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5190-0

  • Online ISBN: 978-1-4684-5188-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics