Skip to main content

Microcirculation and Mitochondrial Function in Focal Brain Ischemia

  • Chapter
Oxygen Transport to Tissue VIII

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 200))

  • 120 Accesses

Abstract

It is well-established that ischemia leads to very complex and heterogenous changes in microcirculation and metabolism of the brain /Siesjö, 1981; Raichle, 1983; Welsh, 1984/. Although the severity of brain damage depends mainly on the degree and duration of the decrease of cerebral blood flow /CBF/, and hence the depletion of macroerg phosphates, mitochondria seem quite resistant to ischemia /Ikrényi et al., 1976; Ginsberg et al., 1977; Rehncrona et al., 1979; Siesjö, 1981; Dóra, 1985b/.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Chance, B., Williams, R. G., 1955, Respiratory enzymes in oxidative phosphorylation. III. The steady state, J. biol. Chem., 217: 409.

    Google Scholar 

  • Dóra, E., 1984, A simple cranial window technique for optical monitoring of cerebrocortical microcirculation and NAD/NADH redox state. Effect of mitochondria) electron transport inhibitors and anoxic anoxia, J. Neurochem., 42: 101.

    Google Scholar 

  • Dóra, E., 1985a, Further studies on reflectometric monitoring of cerebrocortical microcirculation. Importance of lactate anions in coupling between cerebral blood flow and metabolism, Acta Physiol. Hung., 66: 199.

    Google Scholar 

  • Dora, E., 1985b, Effect of “flow anoxia” and “non flow anoxia” on NAD/NADH redox state of the intact cat brain cortex, Pflügers Arch., 405: 148.

    Article  PubMed  CAS  Google Scholar 

  • Dora, E., 1985c, Effect of adenosine and its stabile analogue 2-chloroadenosine on cerebrocortical microcirculation and NAD/NADH redox state, Pflügers Arch., 404: 208.

    Article  PubMed  CAS  Google Scholar 

  • Dóra, E,, Tanaka, K., Greenberg, J. H., Gonatas, N. H., Reivich, M., 1985, Relationship between cortical microcirculation, NAD/NADH redox state and ECoG during and following 120 min occlusion of the middle cerebral artery in the cat, J. Cereb. Blood Flow Metabol., in press.

    Google Scholar 

  • Garcia, J. H., Lowry, S. L., Briggs, L., Mitchem, H. L., Morawetz, R., Halsey, J. H., 1983, Brain capillaries expand and rupture in areas of ischemia and reperfusion, in: Cerebrovascular Diseases, Reivich, M. and Hurtig, H. I., eds., Raven Press, New York.

    Google Scholar 

  • Ginsberg, M. D., Mela, L., Wrobel-Kuhl, K., Reivich, M., 1977, Mitochondria, metabolism following bilateral cerebral ischemia in the gerbil, Ann. Neurol., 1: 519.

    Article  PubMed  CAS  Google Scholar 

  • Hammond, B., Kontos, H.A., Hess, M. L., 1985, Oxygen radicals in the adult respiratory distress syndrome, in myocardial ischemia and reperfusion injury, and in cerebral vascular damage, Can. J. Physiol. Pharmacol., 63: 173.

    Google Scholar 

  • Heiss, D. W. and Rosner, G., 1983; Duration versus severity of ischemia as critical factors of cortical cell damage, in: Cerebro-vascular Diseases, Reivich, M. and Hurtig, H. I., eds., Raven Press, New York

    Google Scholar 

  • Ikrényi, K., Dóra, E., Hajós, F., Kovâch, A.G.B., 1976, Metabolic and electron microscopic studies post mortem in brain mitochondria, Adv. Exp. Med. Biol., 75: 159.

    Google Scholar 

  • Kuschinsky, W., 1984, Metabolic rate and microcirculation, Adv. Exp. Med. Biol., 169: 39.

    Google Scholar 

  • Marcoux, F. W., Morawetz, R.B., Crowell, R. M., DeGirolami, U., Halsey, J. H., 1982, Differential regional vulnerability in transient focal cerebral ischemia, Stroke, 13: 339.

    Article  PubMed  CAS  Google Scholar 

  • Raichle, M. A., 1983, The pathophysiology of brain ischemia, Ann. Neurol., 13: 2.

    Article  PubMed  CAS  Google Scholar 

  • Rehncrona, S., Mela, L., Siesjö, B. K., 1979, Recovery of brain mitochondria) function in the rat after complete and incomplete cerebral ischemia, Stroke, 10: 437.

    Article  PubMed  CAS  Google Scholar 

  • Siesjö, B. K., 1981, Cell damage in the brain: A speculative synthesis, J. Cereb. Blood Flow Metabol., 1: 155.

    Article  Google Scholar 

  • Welsh, F. A., 1984, Regional evaluation of ischemic metabolic alterations, J. Cereb. Blood Flow Metabol., 4: 309.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Plenum Press, New York

About this chapter

Cite this chapter

Dóra, E., Greenberg, J.H., Tanaka, K., Gonatas, N.H., Reivich, M. (1986). Microcirculation and Mitochondrial Function in Focal Brain Ischemia. In: Longmuir, I.S. (eds) Oxygen Transport to Tissue VIII. Advances in Experimental Medicine and Biology, vol 200. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5188-7_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5188-7_26

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5190-0

  • Online ISBN: 978-1-4684-5188-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics