Skip to main content

Tumor-Associated Glycolipid Markers: Possible Targets for Drug and Immuno-Toxin Delivery

  • Chapter
Targeting of Drugs With Synthetic Systems

Part of the book series: NATO ASI Series ((NSSA,volume 113))

Abstract

In order to achieve effective targeting of antibody-drug conjugates to specific types of cells, a comprehensive understanding of the chemical, physical, and dynamic properties of cell surface structures is essential. Glycosphingolipids (briefly, glycolipids), as discussed here, are potentially useful to achieve effective targeting for the following reasons: (i) They are an integral part of the lipid bilayer, and the majority are assumed to be inserted at the outer leaflet of the plasma membrane; (ii) their structure and organization in membranes differ from one type of cell to another and constitute characteristic cell surface specificity of each type of cell? and (iii) they may be more readily internalized than other membrane components, since receptor carbohydrates are directly inserted in membranes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Hakomori, Glycosphingolipids in cellular interaction, differentiation, and oncogenesis, Ann. Rev. Biochem. 50:733 (1981).

    Article  CAS  Google Scholar 

  2. S. Hakomori, Aberrant glycosylation in cancer cell membranes as focused on glycolipids: Overview and perspectives, Cancer Res. 45:2405 (1985).

    CAS  Google Scholar 

  3. J. Sundsmo and S. Hakomori, Laco-N-neotetraosylceramide (“paraglaoboside”) as a possible tumor-associated surface antigen of hamster NILpy tumor, Biochem. Biophys. Res. Commun. 68:799 (1976).

    Article  CAS  Google Scholar 

  4. G. Rosenfelder, W.W. Young, Jr., and S. Hakomori, Association of the glycolipid pattern with antigenic alterations in mouse fibroblasts transformed by murine sarcoma virus, Cancer Res. 37:1333 (1977).

    CAS  Google Scholar 

  5. S. Hakomori and W.W. Young, Jr., Tumor-associated glycolipid antigens and modified blood group antigens, Scand. J. Immunol. Supplement 6:97 (1978).

    Article  CAS  Google Scholar 

  6. J.L. Magnani, B. Nilsson, M. Brockhaus, D. Zopf, Z. Steplewski, H. Koprowski, and V. Ginsburg, A monoclonal antibody-defined antigen associated with gastrointestinal cancer is a ganglioside containing sialylated lacto-N-fucopentaose II, J. Biol. Chem. 257:14365 (1982).

    CAS  Google Scholar 

  7. K. Fukushima, M. Hirota, P.I. Terasaki, A. Wakisaka, H. Togashi, D. Chia, N. Suyhama, Y. Fukushi, E. Nudelman, and S. Hakomori, Characterization of sialosylated Lewisx as a new tumor-associated antigen, Cancer Res. 44:5279 (1984).

    CAS  Google Scholar 

  8. Y. Fukushi, E. Nudelman, S.B. Levery, H. Rauvala, and S. Hakomori, Novel fucolipids accumulating in human cancer. III. A hybridoma antibody (FH6) defining a human cancer-assoicated difucoganglioside (VI3NeuAcV3III3Fuc2nLc6), J. Biol. Chem. 259:10511 (1984).

    CAS  Google Scholar 

  9. Y. Fukushi, S. Hakomori, E. Nudelman, and N. Cochran, Novel fucolipids accumulating in human adenocarcinoma. II. Selective isolation of hybridoma antibodies that differentially recognize mono-, di-, and trifucosylated type 2 chain, J. Biol. Chem. 259:4681 (1984).

    CAS  Google Scholar 

  10. K. Abe, J.M. McKibbin, and S. Hakomori, The monoclonal antibody directed to difucosylated type 2 chain (Fucα1→2Galβl→4[fucα1→3] GlcNAβl→R; Y determinant), J. Biol. Chem. 258:11793 (1983).

    CAS  Google Scholar 

  11. A. Brown, T. Feizi, H.C. Gooi, M.J. Emblton, J.K. Picard, and R.W. Baldwin, A monoclonal antibody against human colonic adenoma recognizes difucosylated type 2 blood group chains. Biosci. Rep. 3:163 (1983).

    Article  CAS  Google Scholar 

  12. K.O. Lloyd, G. Larson, N. Stromberg, J. Thurin, and K.-A. Karlsson, Mouse monoclonal antibody F-3 recognizes difucosyl type 2 blood group structure, Immunogenetics 17:537 (1983).

    Article  CAS  Google Scholar 

  13. Y. Fukushi, S. Hakomori, and T. Shepard, Localization and alteration of mono-, di-, and trifucosyl α1→3 type 2 chain structures during embryogenesis and in human cancer, J. Exp. Med. 159:506 (1984).

    Article  Google Scholar 

  14. Y. Fukushi, R. Kannagi, S. Hakomori, T. Shepard, B.G. Kulander, and J.W. Singer, Localization and distribution of difucoganglioside (VI3NeuAcV3III3Fuc2nLc5) in normal and tumor tissues defined by its monoclonal antibody FH6, Cancer Res. 45:3711 (1985).

    CAS  Google Scholar 

  15. S. Hakomori, and R. Kannagi, Glycosphingolipids as tumor-associated and differentiation markers, J. Natl. Cancer Inst. 71:231 (1983).

    CAS  Google Scholar 

  16. E. Nudelman, S. Hakomori, R. Kannagi, S. Levery, M.-Y. Yeh, K.E. Hellström, and I. Hellström, Characterization of a human melanoma-associated ganglioside antigen defined by a monoclonal antibody, 4.2, J. Biol. Chem. 257:12752 (1982).

    CAS  Google Scholar 

  17. C.S. Pukel, K.O. Lloyd, L.R. Trabassos, W.G. Dippold, H.F. Oettgen, and L.J. Old, GD3, a prominent ganglioside of human melanoma: Detection and characterization by mouse monoclonal antibody, J. Exp. Med. 155:1133 (1982).

    Article  CAS  Google Scholar 

  18. L.D. Cahan, R. Irie, R. Singh, A. Cassidenti, and J.C. Paulson, Identification of a human neuroectodermal tumor antigen (OFA-I-2) as ganglioside GD2, Proc. Natl. Acad. Sci. USA 79:7629 (1982).

    Article  CAS  Google Scholar 

  19. K. Watanabe, C.S. Pukel, H. Takeyama, K.O. Lloyd, H. Shiku, L.T.C. Li, L.R. Trabassos, H.F. Oettgen, and L.J. Old, Human melanoma antigen AH is an autoantigen ganglioside related to GD2, J. Exp. Med. 156:1884 (1982).

    Article  CAS  Google Scholar 

  20. O. Nillson, J.-E. Mansson, T. Brezicka, J. Holmgren, L. Lindholm, S. Sorenson, F. Yngvason, and L. Svennerholm, Fucosyl GM1, a ganglioside associated with small cell lung carcinomas, Glycoconjugate J., 1:43 (1984).

    Article  Google Scholar 

  21. E.G. Bremer, S.B. Levery, S. Sonnino, R. Ghidoni, S. Canevari, R. Kannagi, and S. Hakomori, Characterization of a glycosphingolipid antigen defined by the monoclonal antibody MBr1 expressed in normal and neoplastic epithelial cells of human mammary gland, J. Biol. Chem. 259:14773 (1984).

    CAS  Google Scholar 

  22. D.L. Urdal, and S. Hakomori, Tumor-associated ganglio-N-triosylceramide: Target for antibody dependent, avidin-mediated drug killing of tumor cells, J. Biol. Chem. 255:10509 (1980).

    CAS  Google Scholar 

  23. S. Hakomori, W.W. Young, Jr., and D. Urdal, Glycolipid tumor cell markers and their monoclonal antibodies: Drug targeting and immunosuppression, in: “Monoclonal Antibodies in Drug Development”, T. August, ed., Johns Hopkins University Press, Baltimore (1982).

    Google Scholar 

  24. G. Weissman, D. Bloomgarden, R. Kaplan, C. Cohen, S. Hoffstein, T. Collins, A. Gotlieb, and D. Nagle, A general method for the introduction of enzymes, by means of immunoglobulin-coated liposomes, into lysosomes of deficient cells, Proc. Natl. Acad. Sci. USA 72:88 (1975).

    Article  Google Scholar 

  25. C.M. Cohen, G. Weissmann, S. Hoffstein, Y.C., Awasthi, and S.K. Srivastava, Introduction of purified hexosaminidase A into Tay-Sachs leukocytes by means of immunoglobulin-coated liposomes, Biochemistry 15:452 (1976).

    Article  CAS  Google Scholar 

  26. G. Gregoriadis, and E.D. Neerunjun, Homing of liposomes to target cells, Biochem. Biophys. Res. Commun. 65:537 (1975).

    Article  CAS  Google Scholar 

  27. G. Gregoriadis, E.D. Neerunjun, and R. Hunt, Fate of liposome-associated agent injected into normal and tumor-bearing rodents: Attempts to improve localization in tumor tissues, Life Sci. 21:374 (1977).

    Article  Google Scholar 

  28. L. Huang, and S.J. Kennel, Binding of immunoglobulin G to phospholipid vesicles by sonication, Biochemistry 18:1702 (1979).

    Article  CAS  Google Scholar 

  29. D. Sinha, and P. Karush, Attachment to membranes of exogenous immunoglobulin conjugated to a hydrophobic anchor, Biochem. Biophys. Res. Commun. 90:554 (1979).

    Article  CAS  Google Scholar 

  30. T.D. Heath, R.T. Farley, and D. Papahadjopoulous, Antibody targeting of liposomes: Cell specificity obtained by conjugation of F(ab’)2 to vesicle surface, Science 210:539 (1980).

    Article  CAS  Google Scholar 

  31. W.W. Young, Jr., and S. Hakomori, Therapy of mouse lymphoma with monoclonal antibodies to glycolipid: Selection of low antigenic variants in-vivo, Science 211:487 (1981).

    Article  CAS  Google Scholar 

  32. J. Brown, R.G. Woodbury, C.E. Hart, I. Hellstrom, and K. Hellstrom, Quantitative analysis of melanoma-assoicated antigen p97 in normal and neoplastic tissues, Proc. Natl. Acad. Sci. USA 78:539 (1981).

    Article  CAS  Google Scholar 

  33. A.C. Morgan, D.R. Galloway, and R.A. Reisfeld, Production and characterization of monoclonal antibody to melanoma-specific glycoproteins, Hybridoma 1:27 (1981).

    Article  CAS  Google Scholar 

  34. J. Wiels, S. Junqua, P. Dujardin, J.-B. LePecq, and T. Tursz, Properties of immunotoxins against a glycolipid antigen associated with Burkitt’s lymphoma, Cancer Res. 44:129 (1984).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Plenum Press, New York

About this chapter

Cite this chapter

Hakomori, Si. (1986). Tumor-Associated Glycolipid Markers: Possible Targets for Drug and Immuno-Toxin Delivery. In: Gregoriadis, G., Senior, J., Poste, G. (eds) Targeting of Drugs With Synthetic Systems. NATO ASI Series, vol 113. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5185-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5185-6_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5187-0

  • Online ISBN: 978-1-4684-5185-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics