Skip to main content

Polymers as Matrices for Drug Release

  • Chapter
Targeting of Drugs With Synthetic Systems

Part of the book series: NATO ASI Series ((NSSA,volume 113))

  • 160 Accesses

Abstract

The pharmaceutical applications of synthetic polymers may be broadly divided into two main sections: the physical incorporation of active molecules into a polymeric matrix, from which they may be subsequently released either by diffusion processes, or by erosion and the synthesis of pharmacologically active polymers. Pharmacologically active polymers may be classified as follows:

  1. 1.

    Polymers which are pharmacologically active per se, their activity dependant on macromolecularity. The corresponding monomers, or non-macro-molecular models, are inactive.

  2. 2.

    Polymers whose activity depends on moieties structurally related to well known non-macromolecular drugs, linked to the macromolecular backbone with covalent bonds which are not expected to be cleaved in order to exert activity.

  3. 3.

    Polymers which are able to give rise to non-macromolecular active substances after administration. These may be further divided into two main categories: a) Polymers in which residues of active molecules are constituents of the main backbone. Consequently, the active molecules are released by degradation of the whole macromolecule; b) Polymers in which residues of active molecules are linked as side substituents to a polymeric or oligomeric structure with covalent bonds cleavable in body environments. The release of active molecules does not necessarily involve a degradation of the whole produce, which may or may not take place as a separate process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Drobnik and F. Rypacek, Soluble synthetic polymers in biological systems, Advanc. Polym. Sci. 57:1 (1984).

    Article  CAS  Google Scholar 

  2. R. Duncan and J. Kopecek, Soluble synthetic polymers as potential drug carriers, Advanc. Polym. Sci. 57:53 (1984).

    Google Scholar 

  3. J. Pitha, Polymer-cell surface interactions and drug targeting in: “Targeted Drugs”, E. Goldberg, ed., John Wiley and Sons, New York (1983).

    Google Scholar 

  4. P. Ferruti, Macromolecular drugs acting as precursors of non-macro-molecular active substances. Preliminary considerations, Pharmacol. Res. Commun. 7:1 (1975).

    Article  CAS  Google Scholar 

  5. P. Ferruti, Macromolecular Drugs, Il Farmaco, Ed. Sci. 3:220 (1977).

    Google Scholar 

  6. H. Ringsdorf, Synthetic Polymeric Drugs, Mid. Macromolecular Monogr. 5:197 (1978).

    CAS  Google Scholar 

  7. P. Ferruti and F. Vaccaroni, Polymeric acrylic and methacrylic esters I and amines by reaction of poly(acrylic acid) and poly(methacrylic acid) with N,N’-carbonyldiimidazole and alcohols or amines, J. Pol. Sci. 13:2859 (1975).

    CAS  Google Scholar 

  8. P. Ferruti, A. Fere and G. Cottica, Poly-1-acryloylbenzotriazole as polyester and Polyacrylamide precursor, J. Polym. Sci. 12:553 (1974).

    CAS  Google Scholar 

  9. H.G. Batz, G. Franzmann and H. Ringsdorf, Model reactions for synthesis of pharmacologically active polymers by way of monomeric and polymeric reactive esters, Angew. Chem. 12:1103 (1972).

    Google Scholar 

  10. P. Ferruti, A. Bettelli and A. Fere, High polymers of acrylic and methacrylic esters of N-hydroxysuccinimide as Polyacrylamide and polymethacrylamide precursors, Polymer. 13:462 (1972).

    Article  CAS  Google Scholar 

  11. C.P. Su and H. Morawetz, Reactivity of polymer substituents. Aminolysis of p-nitrophenylester residues attached to various polymer backbones, J. Polym. Sci. 15:185 (1977).

    CAS  Google Scholar 

  12. P. Ferruti and G. Cottica, 1-Methacryloylimidazole as methacrylating agent, J. Polym. Sci. 12:2453 (1974).

    CAS  Google Scholar 

  13. H.G. Batz and J. Koldehoff, Monomere und Polymere Succinimidoester von co-Methacryloylaminosäuren, ihre Darstellung und inhre Reaktion mit Aminen, Makromol. Chem. 177:683 (1976).

    Article  CAS  Google Scholar 

  14. P. Ferruti, F. Vaccaroni and M.C. Tanzi, Synthesis and exchange reactions of some polymeric benzotriazolides, J. Polym. Sci., 16:1435 (1978).

    CAS  Google Scholar 

  15. R. Duncan and J.B. Lloyd, Degradation of side chains of N-(2-hydroxy-propyl) methacylamide copolymers by lysosomal enzymes, Biochem. Biophys. Res. Commun. 94:284 (1980).

    Article  CAS  Google Scholar 

  16. R. Duncan, H.C. Cable, J.B. Lloyd, P. Rejmanova and J. Kopecek, Polymers containing enzymatically degradable bonds, Makromol. Chem. 184:1997 (1983).

    Google Scholar 

  17. P. Ferruti, Functionalization of polymers in: “Reactions on Polymers”, J.A. Moore ed., D. Reidel Publishing Co., Boston (1973).

    Google Scholar 

  18. P. Ferruti, A.S. Angeloni, G. Scapini and M.C. Tanzi, New oligomers and polymers as drug carriers in: “Recent Advances in Drug Delivery Systems”, J.M. Anderson and S.W. Kim, eds., Plenum Press, New York, (1984).

    Google Scholar 

  19. P. Ferruti, M.C. Tanzi and F. Vaccaroni, Polymeric hydrazides by reaction of hydrazine with polymeric benzotriazolides, J. Polym. Sci. 17:277 (1979).

    CAS  Google Scholar 

  20. G. Franzamann and H. Ringsdorf, Pharmakologisch aktive Polymere, 12: Depotformen von Chlorambucil durch kovalente Bindung on Polymere, Makromol. Chem., 177:2547 (1976).

    Article  Google Scholar 

  21. N. Ghedini, P. Ferruti, V. Andrisano and G. Scapini, Synthesis of a high molecular weight polymeric derivative of 3α,7β-dihydroxy-5β-cholan-24-oic acid (ursodeoxycholic acid), Synth. Comm. 13:707 (1983).

    Article  CAS  Google Scholar 

  22. An example of Polymer/drug (dopamine) combination was given by G. Reinish at the 26th minisymposium on “Polymers in Medicine and Biology”, Prague, July 9–12, 1984.

    Google Scholar 

  23. T. Hirano, W. Klesse and H. Ringsdorf, Polymeric derivatives of activated cyclophosphamide as drug delivery systems in antitumor chemotherapy, Makromol. Chem. 180:1125 (1979).

    Article  CAS  Google Scholar 

  24. P.P. Umrigar, S. Ohasshi and G.B. Butler, Synthesis and properties of alternating copolymers of potential antitumor activity containing 5-fluorouracil, J. Polym. Sci. 17:351 (1979).

    CAS  Google Scholar 

  25. F. Ascoli, G. Casini, M. Ferappi and E. Tubaro, A polymeric nitrofuran derivative with prolonged antibacterial action, J. Med. Chem. 10: 97 (1967).

    Article  CAS  Google Scholar 

  26. J. Pitha, S. Zawadzki and B.A. Hughes, Carriers for drugs and enzymes based on copolymers of allylglycidylether with acrylamide, Makromol. Chem. 183:781 (1982).

    Article  CAS  Google Scholar 

  27. J.C. Brosse, J.C. Soutif and G. Pinazzi, Synthesis and modification of some new acrylate polymers. Fixation of active compounds, Proceedings I.U.P.A.C. 28th Macromol. Symposium, Amherst, Mass, USA, p.383 (1982).

    Google Scholar 

  28. C. Pinazzi, J.C. Rabadeaux and A. Pleurdeau, Synthèse et polymerization de polyméthacrylates porteurs de la quinine. Etude comparée de la toxicité et de l’immunogénicité des formes libres et poly-mériques, Makromol. Chem. 179:1699 (1978).

    Article  CAS  Google Scholar 

  29. M. Tahan, Y. Calderon and A. Zilkha, Synthesis of some polymer models of potentially biologically active compounds, Israel J. Chem. 12: 785 (1973).

    Google Scholar 

  30. G. Domke, I. LĂĽderwald, M. Medina, R. Mantoya, L. Bravoluga, H. Ringsdorf, E. Schmidt, A.M. Silva, J. Soto and G. Walter, The prolongation of the action of pharmaceutical preparations Chemical radioprotection with polymers, Polym. Prepr. Am. Chem. Soc. 16:494 (1975).

    CAS  Google Scholar 

  31. G. Batz, H. Ringsdorf and H. Ritter, Pharmacologically active polymers; 7. Cyclophosphamide and steroid hormone-containing polymers as potential anticancer agents, Makromol. Chem. 175:2229 (1974).

    Article  CAS  Google Scholar 

  32. H.G. Batz, H. Daniel, G. Franzmann, J. Koldehoff, H. Herz, H. Ringsdorf and K. Stokhaus, Pharmakologisch aktive Polymere, Arzneim. Forsch, 27:1884 (1977).

    CAS  Google Scholar 

  33. G. Pinazzi, J.P. Benoit, J.C. Rabadeux and A. Pleurdeau, Synthese de polymères porteurs d’un antivitamine K, la Phénindione, Eur. Polym. J. 15:1069 (1979).

    Article  CAS  Google Scholar 

  34. P. Molz, H. Ringsdorf, G. Abel and P.J. Cox, Synthesis and first in vitro cytotoxicity studies of bis (2- chloroethyl) amino groups containing polymers. Pharmacologically active polymers 22, Int. J. Biol. Macromol. 2:245 (1980).

    Article  CAS  Google Scholar 

  35. T. Hirano, H. Ringsdorf and D.S. Zaharko, Antitumor activity of monomeric and polymeric cyclophosphamide derivatives compared with in vitro hydrolysis, Cancer Res. 40:2263 (1980).

    CAS  Google Scholar 

  36. G. Bauduin, D. Bondon, J. Martel, Y. Pietrasanta and B. Pucci, Study of telomers with potential pharmacological activity. 2. Telomers of acrylic acid and grafting of hydroxylated compounds, Makromol. Chem. 182:773 (1981).

    Article  CAS  Google Scholar 

  37. G. Bauduin, J.M. Bessière, D. Bondon, J. Martel and Y. Pietrasanta, Recherche de télomeres à activité pharmacologique potentielle, 4. Reactions sur les telomères de l’alcool vinylique, Makromol. Chem. 182:3397 (1981).

    Article  CAS  Google Scholar 

  38. G. Bauduin, J.M. Bessière, D. Bondon, J. Martel and Y. Pietrasanta, Recherche de telomeres à activité pharmacologique potentielle. 5. Reactions sur les telomères de l’acide acrylique, Makromol. Chem. 183:3491 (1982).

    Google Scholar 

  39. G.P. Pinazzi, A. Menil, J.C. Rabadeux and A. Pleurdeau, Polyiso-prenes and polybutadiene derivatives of potential biomedical interest. Part II. J. Polym. Sci. 52:1 (1975).

    CAS  Google Scholar 

  40. G.P. Pinazzi, A. Menil, J.C- Rabadeux and A. Pleudeau, Polyisoprenes and polybutadiene derivatives of testosterone, Polymer, 12:447 (1974).

    CAS  Google Scholar 

  41. A.F. BĂĽckmann, M. Morr and G. Johansson, Punctionalization of poly (ethylene glycol) and monomethoxy-poly (ethylene glycol), Makromol. Chem. 182:1379 (1981).

    Article  Google Scholar 

  42. A. Chaabouni, P. Hubert, E. Dellacherie and J. Neel, Synthese de poly(oxyéthylène)s rendus biospécifiques par fixation de Steroides en extrémités de chains. Utilisation d’un poly-(oxyethylene) substitué par des groupes estradiol pour extraire l’isomérase 5→4 oxo-3 Steroide par partage d’affinité, Makromol. Chem. 179:1135 (1978).

    Article  CAS  Google Scholar 

  43. J.C. Galin, P. Rempp and J. Parrod, Preparation de chaînes macromoléculaires dotées d’extrémités functionnelles réactives, C.R. Acad. Sc. Paris, 260:5558 (1965).

    CAS  Google Scholar 

  44. J.M. Harris, N.H. Hundley, T.G. Shannow and E.C. Stuck, Poly(ethylene glycols) as soluble, recoverable, phase-transfer catalysts, J. Org. Chem. 47:4789 (1982).

    Article  CAS  Google Scholar 

  45. J.M. Harris and J. Milton, Laboratory synthesis of polyethylene glycol derivatives, J. Makromol. Sci. 25:325 (1985).

    Google Scholar 

  46. A. Okamoto, K. Toyoshima and I. Mita, Kinetic study on reactions between polymer chain-ends II, Eur. Polym. J. 19:341 (1983).

    Article  CAS  Google Scholar 

  47. S. Zalipsky, C. Gilon and A. Zilkha, Attachment of drugs to poly-ethylene glycols, Eur. Polym. J. 19:1177 (1983).

    Article  CAS  Google Scholar 

  48. F. Brandstetter, H. Scott and E. Bayer, New polymer protecting group in oligonucleotide synthesis. 2. Hydroxyethyl-phenyl-thio-ether of polyethylene glycol, Tetrahedron Lett., 31:2705 (1974).

    Article  Google Scholar 

  49. J. Pitha, K. Kocilek and M.G. Caron, Detergents linked to polysaccharides: preparation and effects on membranes and cells, Eur. J. Biochem. 94;11 (1979).

    Article  CAS  Google Scholar 

  50. L. Tondelli, M. Laus and A.S. Angeloni, Poly(ethylene glycol) imidazolyl formates as oligomeric drug-binding matrices, J. Controll. Release 1:251 (1985).

    Article  CAS  Google Scholar 

  51. P. Ferruti, M.C. Tanzi, L. Rusconi and R. Cecchi, Succinic half-esters of poly(ethylene glycol)s and their benzotriazole and imidazole derivatives as oligomeric drug-binding matrices, Makromol. Chem. 182:2183 (1981).

    Article  CAS  Google Scholar 

  52. L. Ruscono, M.C. Taniz, C. Zambelli and P. Ferruti, Activated derivatives of succinic and glutaric half- — esters of polypropylene glycols, and their exchange reactions with hydroxy- and amino-compounds. Polymer 23:1689 (1982).

    Article  Google Scholar 

  53. E. Boccu’, R. Largajolli and F.M. Veronese, Coupling of monomethoxy polyethylene glycols to proteins via active esters, Z. Natur. Forsch. C. Biosci. 38C:94 (1983).

    Google Scholar 

  54. F.M. Veronese, R. Largajolli, E. Boccu’, C.A. Benassi and O. Schiavon, Appl. Biochem. Biotechnol., in press (1986).

    Google Scholar 

  55. R. Cecchi, L. Rusconi, M.C. Tanzi, F. Danusso and P. Ferruti, Synthesis and pharmacological evaluation of poly(oxyethylene) derivatives of 4-isobuthylphenyl-2-propionic acid (Ibuprofen) J. Med. Chem. 24:622 (1981).

    Article  CAS  Google Scholar 

  56. N. Ghedini, P. Ferruti, V. Andrisano, M.R. Cesaroni and G. Scapini, Oligomeric derivatives of 3α, 7β- -dihydroxy-5β-cholan-24-oic acid (ursodeoxycholic acid), Synth. Comm. 13:701 (1983).

    Article  CAS  Google Scholar 

  57. N. Ghedini, V. Andrisano, V. Zecchi, A. Tartarini, G.G. Scapini and P. Ferruti, J. Controll. Release, in press (1986).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Plenum Press, New York

About this chapter

Cite this chapter

Ferruti, P. (1986). Polymers as Matrices for Drug Release. In: Gregoriadis, G., Senior, J., Poste, G. (eds) Targeting of Drugs With Synthetic Systems. NATO ASI Series, vol 113. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5185-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5185-6_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5187-0

  • Online ISBN: 978-1-4684-5185-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics