Skip to main content

[Norleucine3,6]-Substituted Cholecystokinin Octapeptide Analogues

Design, Synthesis, and Comparative Structure-Activity Relationships in Guinea Pig Brain, Lung, and Pancreas Tissues

  • Chapter

Abstract

Cholecystokinin octapeptide (CCK-8, Fig. 1) is a neurogastric peptide hormone and neurotransmitter that possesses multiple biological activities (Table I). Cholecystokinin octapeptide is one of several molecular variants (e.g., CCK-39, CCK33, CCK-12, and CCK-8) existing within a family of CCK peptides that have been identified in both the central and peripheral nervous systems as well as in the gastrointestinal tract. The specific details related to the discovery, distribution, biosynthesis, metabolism, biological activities in vitro and in vivo, and mechanisms of action of CCK peptides have been excellently reviewed recently (Mutt, 1980; Kelley and Dodd, 1981: Williams, 1982; Morley, 1982; Beinfeld, 1983; Dockray, 1983).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Actachi, H., Rajh, H. M., Tesser, G. I., dePont, J. J. H. M. M., Jensen, R. T., and Gardner, J. D., 1981, Interaction of tryptophan-modified analogues of cholecystokinin-octapeptide with cholecys-tokinin receptors on pancreatic acini, Biochim. Biophys. Acta 678:358–363.

    Article  Google Scholar 

  • Adrian, T. E., Bacarese-Hamilton, A. J., and Bloom, S. R., 1985, Measurement of cholecystokinin octapeptide using a new specific radioimmunoassay, Peptides 6:11–16.

    Article  PubMed  CAS  Google Scholar 

  • Agnathi, L. F., Fuxe, K., Benfenati, F., Celani, M. F., Battistini, N., Mutt, V., Cavicchioli, L., Galli, G., and Hokfelt, T., 1983, Differential modulation by CCK-8 and CCK-4 of [3H]-spiperone binding sites linked to dopamine and 5-hydroxytryptamine receptors in the brain of the rat, Neurosci. Lett. 35:179–183.

    Article  Google Scholar 

  • Bacarese-Hamilton, A. J., Adrian, T. E., Chohan, P., Antony, T., and Bloom, S. R., 1985, Oxidation/reduction of methionine residues in CCK: A study by radioimmunoassay and isocratic reverse phase high pressure liquid chromatography, Peptides 6:17–22.

    Article  PubMed  CAS  Google Scholar 

  • Beglinger, C., Solomon, T. E., Gyr, K., Moroder, L., and Wunsch, E., 1984, Exocrine pancreatic secretion in response to a new CCK-analog, CCK-33 and caerulein in dogs, Regul. Peptides 8:291–296.

    Article  CAS  Google Scholar 

  • Beinfeld, M. C., 1983, Cholecystokinin in the central nervous system. A minireview, Neuropeptides 3:411–427.

    Article  PubMed  CAS  Google Scholar 

  • Bodansky, M., Natarajan, S., Hahne, W., and Gardner, J. D., 1977, Cholecystokinin (pancreozymin). 3. Synthesis and properties of an analogue of the C-terminal heptapeptide with serine sulfate replacing tyrosine sulfate, J. Med. Chem. 20:1047–1050.

    Article  Google Scholar 

  • Bodansky, M., Martinez, J., Priestly, G. P., Gardner, J. D., and Mutt, V., 1978, Cholecystokinin (pancreozymin). 4. Synthesis and properties of a biologically active analogue of the C-terminal heptapeptide with e-hydroxynorleucine sulfate replacing tyrosine sulfate, J. Med. Chem. 21:1030–1035.

    Article  Google Scholar 

  • Bradwejn, J., and de Montigny, C., 1984, Benzodiazepines antagonize cholecystokinin-induced activation of rat hippocampal neurones, Nature 312:363–364.

    Article  PubMed  CAS  Google Scholar 

  • Bunting, S., Holzgrefe, H. H., deVaux, A. E., Staples, D. J., and Sawyer, T. K., 1985, Evidence for a cholecystokinin-octapeptide receptor on guinea pig trachea, in: Peptides: Structure and Function, Proceedings of the Ninth American Peptide Symposium (C.M. Deber, V. J. Hruby, and K. D. Kopple, eds.), Pierce Chemical, Rockford, IL, pp. 579–582.

    Google Scholar 

  • Castiglione, R. de, 1977, Structure-activity relationships in ceruletide-like peptides, in: First International Symposium of Hormonal Receptors in Digestive Tract Physiology (S. Bonfils, P. Fromageot, and G. Rosselin, eds.), Elsevier/North-Holland Biomedical Press, Amsterdam, pp. 33–42.

    Google Scholar 

  • Castiglione, R. de, 1983, Exploitation and exploration of ceruletide and eledoisin, two peptides of nonmammalian origin, Biopolymers 22:507–515.

    Article  PubMed  Google Scholar 

  • Chang, T.-M., and Chey, W. Y., 1983, Radioimmunoassay of cholecystokinin, Dig. Dis. Sci., 28:456–468.

    Article  PubMed  CAS  Google Scholar 

  • Chang, R. S. L., Lotti, V. J., Martin, G. E., and Chen, T. B., 1983, Increase in brain 125I-cholecystokinin (CCK) receptor binding following chronic haloperidol treatment, intracisternal 6-hydroxydopamine or ventral tegmental lesions, Life Sci. 32:871–878.

    Article  PubMed  CAS  Google Scholar 

  • Chang, R. S. L., Lotti, V. J., and Chen, T. B., 1985, Cholecystokinin receptor mediated hydrolysis of inositol phospholipids in guinea pig gastric glands, Life Sci. 36:965–971.

    Article  PubMed  CAS  Google Scholar 

  • Cohen, S. L., Knight, M., Tamminga, C. A., and Chase, T. N., 1982, Cholecystokinin-octapeptide effects on conditioned-avoidance behavior, stereotypy and catalepsy, Eur. J. Pharmacol. 83:213–222.

    Article  PubMed  CAS  Google Scholar 

  • Crawley, J. N., St. Pierre, S., and Gaudreau, P., 1984, Analysis of the behavioral activity of C-and N-terminal fragments of cholecystokinin octapeptide, J. Pharmacol. Exp. Ther. 230:438–444.

    PubMed  CAS  Google Scholar 

  • Dockray, G. J., 1983, Cholecystokinin, in: Brain Peptides (D. T. Krieger, M. J. Brownstein, and J. B. Martin, eds.), John Wiley & Sons, New York, pp. 851–869.

    Google Scholar 

  • Durieux, C., Belleney, J., Lallemand, J.-Y., Roques, B. P., and Fournie-Zaluski, M.-C., 1983, 1H-NMR conformational study of sulfated and non-sulfated cholecystokinin fragment CCK27-33: Influence of the sulfate group on the peptide folding, Biochem. Biophys. Res. Commun. 114:705–712.

    Article  PubMed  CAS  Google Scholar 

  • Emerson, J., and MacKay, D., 1979, The zig-zag tracheal strip, J. Pharm. Pharmacol. 31:798.

    Article  Google Scholar 

  • Faris, P. L., Komisaruk, B. R., Watkins, L. R., and Mayer, D. J., 1983, Evidence for the neuropeptide cholecystokinin as an antagonist of opiate analgesia, Science 219:310–312.

    Article  PubMed  CAS  Google Scholar 

  • Fekete, M., Balázs, M., Penke, B., and Telegdy, G., 1981, Influence of sulfated and unsulfated cholecystokinin octapeptide on conditioned feeding behavior in rats, Peptides 2:385–388.

    Article  PubMed  CAS  Google Scholar 

  • Finkelstein, J. A., Steggles, A. W., Martinez, P. A., and Praissman, M., 1984, Cholecystokinin receptor binding levels in genetically obese rat brain, Peptides 5:11–14.

    Article  PubMed  CAS  Google Scholar 

  • Fourmy, D., Pradayrol, L., Vaysse, N., Susini, C., and Ribet, A., 1984a, 125I-[Thr34, Nle37]-CCK31-39: A nonoxidizable tracer for the characterization of CCK receptor on pancreatic acini and radio-immunoassay of C-terminal CCK peptides, J. Immunoassay 5:99–120.

    Article  PubMed  CAS  Google Scholar 

  • Fourmy, D., Zahidi, A., Pradayrol, L., Vayssette, J., and Ribet, A., 1984b, Relationship of CCK/gastrin receptor binding to amylase release in dog pancreatic acini, Regul. Peptides 10:57–68.

    Article  CAS  Google Scholar 

  • Gardner, J. D., Conlon, T. P., Klaeveman, H. L., Actams, T. D., and Ondetti, M. A., 1975, Action of cholecystokinin and cholinergic agents on calcium transport in isolated pancreatic acinar cells, J. Clin. Invest. 56:366–375.

    Article  PubMed  CAS  Google Scholar 

  • Gardner, J. D., Knight, M., Sutliff, V. E., Tamminga, C. A., and Jensen, R. T., 1984, Derivatives of CCK-(26-32) as cholecystokinin receptor antagonists in guinea pig panreatic acini, Am. J. Physiol. 246:G292–G295.

    PubMed  CAS  Google Scholar 

  • Gaudreau, P., Morell, J. L., St. Pierre, S., Quirion, R., and Pert, C., 1983a, Cholecystokinin octapeptide fragments: Synthesis and structure-activity relationship, in: Peptides: Structure and Function (V. J. Hruby and D. H. Rich, eds.), Pierce Chemical, Rockford, IL, pp. 441–44.

    Google Scholar 

  • Gaudreau, P., Quirion, R., St. Pierre, S., and Pert, C. B., 1983b, Characterization and visualization of cholecystokinin receptors in rat brain using [3H]pentagastrin, Peptides 4:755–762.

    Article  PubMed  CAS  Google Scholar 

  • Gillis, R. A., Quest, J. A., Pagani, F. D., Souza, J. D., Taveira da Silva, A. M., Jensen, R. T., Garvey, T. Q. III, and Hamosh, P., 1983, Activation of central nervous system cholecystokinin receptors stimulates respiration in the cat, J. Pharamcol. Exp. Ther. 224:408–414.

    CAS  Google Scholar 

  • Halmy, L., Nyakas, C., and Walter, J., 1982, The C-terminal tetrapeptide of cholecystokinin decreases hunger in rats, Experientia 38:873–874.

    Article  PubMed  CAS  Google Scholar 

  • Hays, S. E., Beinfeld, M. C., Jensen, R. T., Goodwin, F. K., and Paul, S. M., 1980, Demonstration of a putative receptor site for cholecystokinin in rat brain, Neuropeptides 1:53–62.

    Article  Google Scholar 

  • Holland, J., Hirst, B. B., and Shaw, B., 1982, Structure-activity studies with cholecystokinin on gastric secretion in the cat, Peptides 3:891–895.

    Article  PubMed  CAS  Google Scholar 

  • Innis, R. B., and Snyder, S. H., 1980, Cholecystokinin receptor binding in brain and pancreas: Regulation of pancreatic binding by cyclic and acyclic guanine nucleotides, Eur. J. Pharmacol. 65:123–124.

    Article  PubMed  CAS  Google Scholar 

  • Jensen, R. T., Jones, S. W., and Gardner, J. D., 1983, COOH-Terminal fragments of cholecystokinin: A new class of cholecystokinin receptor antagonists, Biochim. Biophys. Acta. 757:250–258.

    Article  PubMed  CAS  Google Scholar 

  • Kadar, T., Pesti, A., Penke, B., Toth, G., Zarandi, M., and Telegdy, G., 1983, Structure-activity and dose-effect relationships of the antagonism of picrotoxin-induced seizures by cholecystokinin, fragments and analogues of cholecystokinin in mice, Neuropharmacology 22:1223–1229.

    Article  PubMed  CAS  Google Scholar 

  • Kaminski, D. L., Ruwart, M. J., and Jellinek, M., 1977, Structure-function relationships of peptide fragments of gastrin and cholecystokinin, Am. J. Physiol. 233:E286–E292.

    PubMed  CAS  Google Scholar 

  • Kelley, J. S., and Dodd, J., 1981, Cholecystokinin and gastrin as transmitters in the mammalian central nervous system, in: Neural Peptides and Neuronal Communication (J. B. Martin, S. Reichlin, and K. L. Bick, eds.), Raven Press, New York, pp. 133–144.

    Google Scholar 

  • Kochman, R. L., Grey, T. R., and Hirsch, J. D., 1984, Cholecystokinin in vivo reduces binding to rat hypothalamic β-adrenergic sites, Peptides 5:499–502.

    Article  PubMed  CAS  Google Scholar 

  • Lahti, R. A., Sethy, V. H., Barsuhn, C., and Hester, J. B., 1983, Pharmacological profile of the antidepressant adinazolam, a triazolobenzodiazepine, Neuropharmacology 22:1277–1282.

    Article  PubMed  CAS  Google Scholar 

  • Magous, R., Martinez, J., Lignon, M. F., and Bali, J. P., 1983, The role of the Asp-32 residue of cholecystokinin in gastric acid secretion and gastrin receptor recognition, Regul. Peptides 5:327–332.

    Article  CAS  Google Scholar 

  • Martinez, J., Winternitz, F., Bodansky, M., Gardner, J. D., Walker, M. D., and Mutt, V., 1982, Synthesis and some pharmacological properties of Z-Tyr(SO3H)-Met-Gly-Trp-Met-Asp(Phe-NH2)-OH, a 32 β-aspartyl analogue of cholecystokinin (pancreozymin) 27-33, J. Med. Chem. 25:589–593.

    Article  PubMed  CAS  Google Scholar 

  • Meyer, F. D., Gyr, K., Kayasseh, L., Jeker, L., Wall, M., Trzeciak, A., and Gillesen, D., 1980, Biological activity of the C-terminal octapeptide of cholecystokinin, of three of its analogues and of caerulein in the dog, Experientia 36:434–436.

    Article  PubMed  CAS  Google Scholar 

  • Miller, J. L., Jardine, I., Weissman, E., Go, V. L. W., and Speicher, D., 1984, Characterization of cholecystokinin from the human brain, J. Neurochem. 43:835–840.

    Article  PubMed  CAS  Google Scholar 

  • Morley, J. S., 1968, Structure-function relationships in gastrin-like peptides, Proc. R. Soc. Lond. [Biol.] 170:97–111.

    Article  CAS  Google Scholar 

  • Morley, J. S., 1977, Information about peptide hormone receptors from structure-activity studies, in: First International Symposium of Hormonal Receptors in Digestive Tract Physiology (S. Bonfils, P. Fromageot, and G. Rosselin, eds.), Elsevier/North-Holland Biomedical Press, Amsterdam, pp. 3–11.

    Google Scholar 

  • Morley, J. E., 1982, The ascent of cholecystokinin (CCK) from gut to brain, Life Sci. 30:479–493.

    Article  PubMed  CAS  Google Scholar 

  • Moroji, T., Watanabe, N., Aoki, N., and Itoh, S., 1982, Antipsychotic effects of ceruletide (cerulein) on chronic schizophrenia, Arch. Gen. Psychiatry 39:485.

    Article  PubMed  CAS  Google Scholar 

  • Murphy, R. B., and Schuster, D. I., 1982, Modulation of [3H]-dopamine binding by cholecystokinin octapeptide (CCK-8), Peptides 3:539–543.

    Article  PubMed  CAS  Google Scholar 

  • Mutt, V., 1980, Cholecystokinin: Isolation, structure, and functions, in: Gastrointestinal Hormones (G. B. J. Glass, ed.), Raven Press, New York, pp. 169–221.

    Google Scholar 

  • Nair, N. P. V., Bloom, D. M., and Nestoros, J. N., 1982, Cholecystokinin appears to have antipsychotic properties, Prog. Neuropsychopharmacol. Biol. Psychiatry 6:509–512.

    Article  PubMed  CAS  Google Scholar 

  • Peikin, S. R., Rottman, A. J., Batzri, S., and Gardner, J. D., 1978, Kinetics of amylase release by dispersed acini prepared from guinea pig pancreas, Am. J. Physiol. 235:E743–E749.

    PubMed  CAS  Google Scholar 

  • Penke, B., Zarandi, M., Toth, G. K., Kovacs, K., Fekete, M., Telegdy, G., and Pham, P., 1983, The active centres of gastrin and cholecystokinin: Syntheses, conformational problems, correlations between chemical structures and biological activity, in: Peptides 1982 (K. Blaha and P. Malon, eds.), Walter DeGruyter, Berlin, pp. 569–575.

    Google Scholar 

  • Penke, B., Hajnal, F., Lonovics, J., Holzinger, G., Kadar, T., Telegdy, G., and Rivier, J., 1984, Synthesis of potent heptapeptide analogues of cholecystokinin, J. Med. Chem. 27:845–849.

    Article  PubMed  CAS  Google Scholar 

  • Pi-Sunyer, X., Kissileff, H. R., Thornton, J., and Smith, G. P., 1982, C-Terminal octapeptide of cholecystokinin decreases food intake in obese men, Physiol. Behav. 29:627–630.

    Article  PubMed  CAS  Google Scholar 

  • Plusec, J., Sheehan, J. T., Sabo, E. F., Williams, N., Kocy, O., and Ondetti, M. A., 1970, Synthesis of analogs of the C-terminal octapeptide of cholecystokinin-pancreozymin. Structure-activity relationship, J. Med. Chem. 13:349–352.

    Article  Google Scholar 

  • Polak, J. M., and Bloom, S. R., 1982, Regulatory peptides and neuron-specific enolase in the respiratory tract of man and other mammals, Exp. Lung Res. 3:313–328.

    Article  PubMed  CAS  Google Scholar 

  • Praissman, M., and Waiden, M., 1984, The binding characteristics of 125I-gastrin and 125I-CCK-8 to guinea pig fundic gastric glands differ: Is there more than one binding site for peptides of the CCK-gastrin family? Biochem. Biophys. Res. Commun. 123:641–647.

    Article  PubMed  CAS  Google Scholar 

  • Praissman, M., Izzo, R. S., and Berkowitz, J. M., 1982, Modification of the C-terminal octapeptide of cholecystokinin with a high-specific-activity iodinated imidoester: Preparation, characterization, and binding to isolated pancreatic acinar cells, Anal. Biochem. 121:190–198.

    Article  PubMed  CAS  Google Scholar 

  • Praissman, M., Martinez, P. A., Saladino, C. F., Berkowitz, J. M., Steggles, A. W., and Finkelstein, J. A., 1983, Characterization of cholecystokinin binding sites in rat cerebral cortex using a 125I-CCK-8 probe resistant to degradation, J. Neurochem. 40:1406–1413.

    Article  PubMed  CAS  Google Scholar 

  • Rehfeld, J. F., and Morley, J. S., 1983, Residue-specific radioimmunoanalysis: A novel analytical tool. Application to the C-terminal of CCK/gastrin peptides, J. Biochem. Biophys. Methods 7:161–170.

    Article  PubMed  CAS  Google Scholar 

  • Rogawski, M. A., 1982, Cholecystokinin octapeptide: Effects on the excitability of cultured spinal neurons, Peptides 3:545–555.

    Article  PubMed  CAS  Google Scholar 

  • Saito, A., Sankaran, H., Goldfine, I. D., and Williams, J. A., 1980, Cholecystokinin receptors in the brain: Characterization and distribution, Science 208:1155–1156.

    Article  PubMed  CAS  Google Scholar 

  • Saito, A., Williams, J. A., and Goldfine, I. D., 1981, Alterations in brain cholecystokinin receptors after fasting, Nature 289:599–600.

    Article  PubMed  CAS  Google Scholar 

  • Sakamoto, C., Williams, J. A., and Goldfine, I. D., 1984, Brain CCK receptors are structurally distinct from pancreas CCK receptors, Biochem. Biophys. Res. Commun. 124:497–502.

    Article  PubMed  CAS  Google Scholar 

  • Sankaran, H., Goldfine, I. D., Deveney, C. W., Wong, K.-Y., and Williams, J. A., 1980, Binding of cholecystokinin to high affinity receptors on isolated rat pancreatic acini, J. Biol. Chem. 255:1849–1853.

    PubMed  CAS  Google Scholar 

  • Schiller, P. W., Natarajan, S., and Bodansky, M., 1978, Determination of the intramolecular tryos-ine-tryptophan distance in a 7-peptide related to the C-terminal sequence of cholecystokinin, Int. J. Peptide Protein Res. 12:139–142.

    Article  CAS  Google Scholar 

  • Schreur, P. J. K. D., Sawyer, T. K., Ruwart, M. J., Collins, R. J., Staples, D. J., Rush, B. D., Nichols, N. F., and Russell, R. R., 1985, Satiety effects of CCK-8 in rats: Studies on peptide delivery, structure-activity, and subchronic treatment, in: Fifth International Washington Spring Symposium: Neural and Endocrine Peptides and Receptors (abstract).

    Google Scholar 

  • Spanarkel, M., Martinez, J., Briet, C., Jensen, R. T., and Gardner, J. D., 1983, Cholecystokinin-27-33-amide: A member of a new class of cholecystokinin receptor antagonists, J. Biol. Chem. 258:6746–6749.

    PubMed  CAS  Google Scholar 

  • Stacher, G., Steinringer, H., Schmierer, G., Schneider, C., and Winklehner, S., 1982a, Cholecystokinin octapeptide decreases intake of solid food in man, Peptides 3: 133–136.

    Article  PubMed  CAS  Google Scholar 

  • Stacher, G., Steinringer, H., Schmierer, G., Winklehner, S., and Schneider, C., 1982b, Ceruletide increases threshold and tolerance to experimentally induced pain in healthy man, Peptides 3:955–962.

    Article  PubMed  CAS  Google Scholar 

  • Szecowka, J., Goldfine, I. D., and Williams, J. A., 1985, Solubilization and characterization of CCK receptors from mouse pancreas, Regul. Peptides 10:71–83.

    Article  CAS  Google Scholar 

  • Van Ree, J. M., Gaffori, O., and de Wied, D., 1983, In rats, the behavioral profile of CCK-8 related peptides resembles that of antipsychotic agents, Eur. J. Pharmacol. 93:63–78.

    Article  PubMed  Google Scholar 

  • Wennogle, L. P., Steel, D. J., and Petrack, B., 1985, Characterization of central cholecystokinin receptors using a radioiodinated octapeptide probe, Life Sci. 36:1485–1492.

    Article  PubMed  CAS  Google Scholar 

  • Williams, J. A., 1982, Cholecystokinin: A hormone and a neurotransmitter, Biomed. Res. 3:107–121.

    CAS  Google Scholar 

  • Zetler, G., 1982, Cholecystokinin octapeptide, caerulein and caerulein analogues: Effects on thermoregulation in the mouse, Neuropharmacology 21:795–801.

    Article  PubMed  CAS  Google Scholar 

  • Zetler, G., 1983, Cholecystokinin octapeptide (CCK-8), ceruletide and analogues of ceruletide: Effects on tremors induced by oxotremorine, harmine and ibogaine. A comparison with prolyl-leucylglycine amide (MIF), anti-parkinsonian drugs and clonazepam, Neuropharmacology 22:757–766.

    Article  PubMed  CAS  Google Scholar 

  • Zetler, G., 1984, Ceruletide, ceruletide analogues and cholecystokinin octapeptide (CCK-8): Effects on isolated intestinal preparations and gallbladders of guinea pigs and mice, Peptides 5:729–736.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Plenum Press, New York

About this chapter

Cite this chapter

Sawyer, T.K. et al. (1986). [Norleucine3,6]-Substituted Cholecystokinin Octapeptide Analogues. In: Moody, T.W. (eds) Neural and Endocrine Peptides and Receptors. GWUMC Department of Biochemistry Annual Spring Symposia. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5152-8_37

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5152-8_37

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5154-2

  • Online ISBN: 978-1-4684-5152-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics