Bovine Embryo: Development, Cloning, Sexing and Transfer of Genes

  • N. L. First
  • E. S. Critser
  • J. M. Robl
Part of the Reproductive Biology book series (RBIO)


Recent technological advancements in biology including the use of immunological tools have relevance to the livestock industry. These technologies are in support of and expected to contribute most importantly to the cattle artificial breeding and embryo transfer industries. At present nearly 70% of 11 million U.S. dairy cows are mated by artificial insemination. Genetic improvement in dairy cattle through artificial insemination has resulted in a doubling of milk production per cow over the past 30 years. Little progress has been made in genetic improvement by selection of offspring from superior females because a cow produces relatively few calves per year or in a lifetime. To multiply the progeny from an outstanding female or mating, a commercial embryo transfer industry has developed. This industry last year performed approximately 100,000 transfers in the USA and 200,000 in the world of which approximately 25% were with frozen embryos. Its present armament of technologies include the ability to superovulate cows, collect and transfer embryos nonsurgically, store embryos frozen and divide each embryo into two viable embryos. At present 20–30 calves can be produced from one valuable donor cow/year by use of embryo transfer.


Embryo Transfer Follicular Fluid Cumulus Cell Nuclear Transfer Nuclear Transplantation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bach, J. F., 1982, Genetic control of immune responses, in: “Immunology”, J. F. Back, ed., John Wiley and Sons, New York.Google Scholar
  2. Ball, G. D., Ax, R. L. and First, N. L., 1980, Mucopolysaccharide synthesis accompanies expansion of bovine cumulus-oocyte complex in vitro, in: “Functional Correlates of Hormone Receptors in Reproduction”, ed., V. B. Mahesh and T. G. Muldoon, Elsevier, North Holland, New York.Google Scholar
  3. Ball, G. D., Bellin, M. E., Ax, R. L. and First, N. L., 1982, Glycosaminoglycans in bovine cumulus-oocyte complexes: morphology and chemistry, Mol. Cell. Endocr., 28: 113.CrossRefGoogle Scholar
  4. Ball, G. D., Leibfried, M. L., Lenz, R. W., Ax, R. L., Bavister, B. D. and First, N. L., 1983, Factors affecting successful in vitro fertilization of bovine follicular oocytes, Biol. Reprod., 28: 717.PubMedCrossRefGoogle Scholar
  5. Bandyopadhyay, P. K. and Temin, H. M., 1984a, Expression of complete chicken thymidine kinase gene inserted in a retrovirus vector, Mol. Cell. Biol., 4: 749.PubMedGoogle Scholar
  6. Bandyopadhyay, P. K. and Temin, H. M., 1984b, Expression from an internal AUG codeon of herpes simplex thymidine gene in a retrovirus vector, Mol. Cell. Biol., 4: 743.PubMedGoogle Scholar
  7. Bauman, D. E., Eppard, P. J., DeGeeter, M. J. and Lanza, G. M., 1985, Responses of high producing dairy cows to long term treatment with pituitary-and recombinant-somatotropin. J. Diary Sci. 68.Google Scholar
  8. Bines, J. A., Hart, I. C. and Morant, S. V., 1980, Endocrine control of energy metabolism in the cow: the effect on milk yield and levels of some blood constituents of injection growth hormone and growth hormone fragments, Br. J. Nutr., 43: 179.PubMedCrossRefGoogle Scholar
  9. Boland, M. P., 1984, Use of the rabbit oviduct as a screening tool for the viability of mammalian eggs, Theriogenology, 21: 126.CrossRefGoogle Scholar
  10. Bolton, V. N., Oades, P. J. and Johnson, M. H., 1984, The relationship between cleavage, DNA replication and gene expression in the mouse 2-cell embryo, J. Embryol. exp. Morph., 27: 139.Google Scholar
  11. Bradford, G. E., 1982, Evidence for a major gene for rapid growth in mice, J. Anim. Sci. (Suppl. 1): 140) abstract, American and Canadian Meetings.Google Scholar
  12. Bradley, M. P. and Garbers, D. L., 1983, The stimulation of bovine caudal epididymal sperm forward motility on bovine cumulus-egg complexes in vitro, Biochem. Biophys. Res. Comm., 115: 777.PubMedCrossRefGoogle Scholar
  13. Braude, P., Pelham, H., Flach, G. and Lobatto, R., 1979, Post transcriptional control in the early mouse embryo, Nature 282: 102–105.PubMedCrossRefGoogle Scholar
  14. Calarco, P. G. and McLaren, A., 1976, Ultrastructural observations of preimplantation stages of sheep, J. Embryol. exp. Morph., 36: 609.PubMedGoogle Scholar
  15. Camous, S., Heyman, Y., Meziou, W. and Menezo, Y., 1984, Cleavage beyond the block stage and survival after transfer of early bovine embryos cultured with trophoblastic vesicles. J. Reprod. Fert., 72: 479.CrossRefGoogle Scholar
  16. Cascio, S. M. and Wasserman, P. M., 1982, Program of early development in the mammal: Post transcriptional control of a class of proteins synthesized by mouse oocytes and early embryos, Devel. Biol., 89: 397.CrossRefGoogle Scholar
  17. Celada, F. and Welshons, W. J., 1963, An immunogenetic analysis of the male antigen in mice utilizing animals with an exceptional chromosomal constitution. Genetics, 48: 139.PubMedGoogle Scholar
  18. Critser, E. S. and First, N. L., 1985, Use of a fluorescent stain for visualization of nuclear material in living oocytes and early embryos. Stain Tech. (accepted).Google Scholar
  19. Davis, G. H., Montgomery, G. W., Allison, A. J., Kelley, R. W. and Bray, A. R., 1982, Segregation of a major gene influencing fecundity in progeny of Booroola sheep. N.Z.J. Agric. Res., 25: 525.CrossRefGoogle Scholar
  20. DiBerardino, M. A., 1980, Genetic stability and modulation of metazoan nuclei into eggs and oocytes. Differentiation, 17: 17.PubMedCrossRefGoogle Scholar
  21. Eichwald, E. J. and Silmser, C. R., 1955, untitled communication, Transplantation, 2: 148.Google Scholar
  22. Emerman, M. and Temin, H. M., 1984a, High frequency deletion in recovered retrovirus vectors containing exogenous DNA with promoters, J. Virol., 50: 42.PubMedGoogle Scholar
  23. Emerman, M. and Temin, H. M., 1984b, Genes with promoters and retrovirus vectors can be independently suppressed by an epigenetic mechanism, Cell, 39: 459.CrossRefGoogle Scholar
  24. Epstein, C. J., Smith, S. and Travis, B., 1980, Expression of H-Y antigen on preimplantation mouse embryos, Tiss. Antigens, 15: 63.CrossRefGoogle Scholar
  25. Eyestone, W. H., Northey, D. L. and Leibfried-Rutledge, M. L., 1985, Culture of 1-cell bovine embryos in the sheep oviduct, Biol. Reprod., 32: (Suppl 1) 100 (abstract 125).Google Scholar
  26. Fehilly, C. B., Willadsen, S. M. and Tucker, E. M., 1984, Interspecific chimaerism between sheep and goat, Nature 307: 634.PubMedCrossRefGoogle Scholar
  27. Frels, W. I., Bluestone, J. A., Hodes, R. J., Capecchi, M. R. and Singer, D. S., 1985, Expression of microinjected porcine class I major histocompatibility gene in transgenic mice, Science 228: 577.PubMedCrossRefGoogle Scholar
  28. Gold, M., 1985, “The Baby Makers”, Science (85) 6: 26.PubMedGoogle Scholar
  29. Goldberg, E. H., Boyse, E. A., Bennett, T., Shied, M. and Carswell, E. A., 1971, Serological demonstration of H-Y (male) antigen on mouse sperm, Nature 232: 478.PubMedCrossRefGoogle Scholar
  30. Goddard, M. J. and Pratt, H. P. M., 1983, Control of events during early cleavage of the mouse embryo: an analysis of the “2-cell block”, J. Embryol. exp. Morph., 73: 111.PubMedGoogle Scholar
  31. Gordon, J. W. and Ruddle, F. H., 1981, Integration and stable germ line transmission of genes injected into mouse pronuclei, Science 214: 1244.PubMedCrossRefGoogle Scholar
  32. Gorewit, R. C., Bauman, D. E. and Peel, C. J., 1982, Improved animal efficiency using pituitary hormones, in: “Abstracts of, Biotechnology: Commercial and Industrial Applications and Opportunities Conference”, Battelle Memorial Institute, Seattle, WA.Google Scholar
  33. Gurdon, J. B., 1964, The transplantation of living cell nuclei, Advances in Morphogenesis 4: 1.PubMedGoogle Scholar
  34. Hammer, R. E., Pursel, V. G., Rexroad, C. E., Jr., Wall, R. J., Bolt, D. J., Ebert, K. M., Palmiter, R. D. and Brinster, R. L., 1985, Production of transgenic rabbits, sheep and pigs by microinjection, Nature 315: 680.Google Scholar
  35. Handrow, R. R., Lenz, R. W. and Ax, R. L., 1982, Structural comparisons among glycosaminoglycans to promote an acrosome reaction in bovine spermatozoa, Biochem. Biophys. Res. Comm. 197: 1326.CrossRefGoogle Scholar
  36. Hansbrough, I. and Garbers, D. L., 1981, Purification and characterization of a peptide associated with eggs that activates spermatozoa, J. Biol. Chem. 256: 1447.PubMedGoogle Scholar
  37. Hansmann, I., Gebauer, J., Bihl, L. and Grimm, T., 1978, Onset of nucleolus organizer activity in early mouse embryogenesis and evidence of its regulation, Exp. Cell Res. 114: 263.PubMedCrossRefGoogle Scholar
  38. Haseltine, F. P. and Ohno, S., 1981, Mechanisms of sex differentiation, Science 211: 1272.PubMedCrossRefGoogle Scholar
  39. Haseltine, F. P., Genel, M., Crawford, J. D. and Berg, W. R., 1981, H-Y antigen negative patients with testicular tissue and 46 X-Y karyotype, Hum. Genet. 57: 265.PubMedCrossRefGoogle Scholar
  40. Haseltine, F. P., 1983, Sex differentiation, current concepts, in: “The Biological Basis of Reproductive and Developmental Medicine”, J. B. Warshaw, ed., Elsevier Biomedical, Amsterdam.Google Scholar
  41. Heyman, Y., 1985, Factors affecting the survival of transferred whole and half embryos in cattle, Theriogenology 23: 63.CrossRefGoogle Scholar
  42. Hillman, N. and Tasch, R. J., 1969, Ultrastructural and autoradiographic studies of mouse cleavage stages, Am. J. Anat. 126: 151.PubMedCrossRefGoogle Scholar
  43. Illmensee, K. and Hoppe, H. C., 1981, Nuclear transplantation in mus musculus: Developmental potential of nuclei from preimplantation embryos, Cell: 23: 9.PubMedCrossRefGoogle Scholar
  44. Jaenisch, R., 1980, Retroviruses and embryogenesis: microinjection of Moloney leukemia virus into midgestation mouse embryos, Cell 19: 181.PubMedCrossRefGoogle Scholar
  45. Jenkins, N. A., Copeland, N. G., Taylor, B. A. and Lee, B. K., 1981, Dilute (d) coat colour mutation of DBA/2J mice is associated with the site of integration of an ecotropic MuLV genome, Nature 293: 370.PubMedCrossRefGoogle Scholar
  46. Johnson, M. H., 1981, The molecular and cellular basis of preimplantation mouse development, Biol. Rev. 56: 463.PubMedCrossRefGoogle Scholar
  47. King, W. A., 1984, Sexing embryos by cytological methods, Theriogenology 21: 7.CrossRefGoogle Scholar
  48. King, W. A., Niar, A. and Betteridge, K. J., 1985, The nucleolus organizer regions of early bovine embryos, J. Dairy Sci. 68:(Suppl. 1) 249 (abstract).Google Scholar
  49. Knowland, J. and Graham, C., 1972, RNA synthesis at the 2-cell stage of mouse development, J. Embryol. Exp. Morphol. 27: 167.PubMedGoogle Scholar
  50. Koo, G. C. and Varano, A., 1981, Inhibition of H-Y cell mediated cytolysis by monoclonal H-Y specific antibody, Immunogenetics 14: 183.PubMedCrossRefGoogle Scholar
  51. Krco, C. J. and Goldberg, E. H., 1976, H-Y (male) antigen: detection on 8-cell embryos, Science 193: 1134.PubMedCrossRefGoogle Scholar
  52. Lacy, E., Roberts, S., Evans, E. P., Burtenshaw, M. D. and Constantini, F. D., 1983, A foreign ß-globin gene in transgenic mice: integration at abnormal chromosomal positions and expression in inappropriate tissues, Cell 34: 343.PubMedCrossRefGoogle Scholar
  53. Lee, C. N. and Ax, R. L., 1984, Concentrations and composition of glycosaminoglycans in the female bovine reproductive tract, J. Dairy Sci. 67: 2006.PubMedCrossRefGoogle Scholar
  54. Leibfried-Rutledge, M. L., Critser, E. S. and First, N. L., 1985, Fertilization potential of follicular oocytes classified by stage of cycle and size of follicle, Theriogenology (in press).Google Scholar
  55. Leibfried, L. and First, N. L., 1979, Characterization of bovine follicular oocytes and their ability to mature in vitro, J. Anim. Sci. 48: 76.PubMedGoogle Scholar
  56. Lenz, R. W., Ball, G. D., Lohse, J. K., First, N. L. and Ax, R. L., 1983, Chondroitin sulfate facilitates an acrosome reaction in bovine spermatozoa as evidenced by light microscopy, electron microscopy and in vitro fertilization, Biol. Reprod. 28: 683.PubMedCrossRefGoogle Scholar
  57. Lohse, J. K., Robl, J. M. and First, N. L., 1985, Progress towards transgenic cattle, Theriogenology 23:No. 1 (abstract).Google Scholar
  58. Mahi-Brown, C. A. and Yanagimachi, R., 1983, Parameters influencing ovum pickup by oviductal fimbria in the golden hamster, Gamete Research 8: 1–10.CrossRefGoogle Scholar
  59. Mann, R., Mulligan, R. and Baltimore, D., 1983, Construction of a retrovirus packaging mutant and its use to produce helper free defective retrovirus, Cell 33: 153.PubMedCrossRefGoogle Scholar
  60. McGrath, J. and Solter, D., 1983a, Nuclear transplantation in the mouse embryo by microsurgery and cell fusion, Science 220: 1300.PubMedCrossRefGoogle Scholar
  61. McGrath, J. and Solter, D., 1983b, Nuclear transplantation in mouse embryos, J. Exp. Zool. 228: 355.PubMedCrossRefGoogle Scholar
  62. McGrath, J. and Solter, D., 1984, Inability of mouse blastomere nuclei transferred to enucleated zygotes to support development in vitro, Science 226: 1317.PubMedCrossRefGoogle Scholar
  63. Melvold, R. W., Kohn, H. I., Yerganian, G. and Fawcett, D. W., 1977, Evidence suggesting the existence of two H-Y antigens in the mouse, Immunogenetics 5: 33.CrossRefGoogle Scholar
  64. Newcomb, R., 1977, Influence of synchrony and methods of synchrony on embryo transfer, in: “Embryo Transfer in Farm Animals” Betteridge, ed., Monograph 16, Agriculture Canada, Ottawa.Google Scholar
  65. Newport, J. W. and Kirschner, M. W., 1982, A major developmental transition in early xenopus embryos: I. characterization and timing of cellular changes at the midblastula stage, Cell 30: 675.PubMedCrossRefGoogle Scholar
  66. Norberg, H. S., 1973, Ultrastructural aspects of the preattached pig embryo: cleavage and early blastocyst stages, J. Anat. Entwickl.-Gesch. 143: 95.CrossRefGoogle Scholar
  67. O’Brien, M. J., Critser, E. S. and First, N. L., 1985, Developmental potential of isolated blastomeres from early murine embryos, Theriogenology 22: 601.CrossRefGoogle Scholar
  68. Palmiter, R. D., Brinster, R. L., Hammer, R. E., Trumbauer, M. E., Rosenfeld, M. G., Birnberg, N. C. and Evans, R. M., 1982, Dramatic growth of mice that develop from eggs micro injected with metallothionein-growth hormone fusion genes, Nature 300: 611.PubMedCrossRefGoogle Scholar
  69. Palmiter, R. D., Norstedt, G., Gelinas, R. E., Hammer, R. E., Brinster, R. L., 1983, Metallothionein-human GH fusion genes stimulate growth of mice, Science 222: 809.PubMedCrossRefGoogle Scholar
  70. Palmiter, R. D., Wilkie, T. M., Chin, H-Y. and Brinster, R. L., 1984, Transmission distortion and mosaicism in an unusual transgenic mouse pedigree, Cell 36: 869.PubMedCrossRefGoogle Scholar
  71. Papaioannov, V. E., 1982, Lineage analysis of innercell mass and trophectoderm using microsurgically reconstituted mouse blastocysts, J. Embryol. exp. Morphol. 68: 199.Google Scholar
  72. Parrish, J. J., Parrish, J. L. and First, N. L., 1984, Effect of swimup separation and heparin pretreatment of frozen thawed spermatozoa on in vitro fertilization of bovine oocytes, Biol. Reprod. 30: (Suppl. 1): 112.Google Scholar
  73. Parrish, J. J., Susko-Parrish, J. L. and First, N. L., 1985, In vitro fertilization of bovine oocytes using heparin treated and swimup separated frozen thawed bovine sperm is repeatable and results in high frequencies of fertilization, Theriogenology 23: No. 1 (abstract).Google Scholar
  74. Payne, L. N., 1973, Genetics and control of avian diseases, Avia Pathology 2: 237.Google Scholar
  75. Peel, C. J., Bauman, D. E., Gorewit, R. G. and Sniffen, C. J., 1981, Effect of exogenous growth hormone on lactation performance in high yielding dairy cows, J. Nutr. 111: 1662.PubMedGoogle Scholar
  76. Peel, C. J., Sandles, L. D., Quelch, K. J. and Herington, A. C., 1985, The effects of long term administration of bovine growth hormone on the lactational performance of identical twin dairy cows. Anim. Prod. (in press).Google Scholar
  77. Picard, L., King, W. A. and Betteridge, K. J., Production of sexed calves from frozen-thawed embryos, Vet. Rec. (in press, 1985).Google Scholar
  78. Polge, C., 1982, Embryo transplantation and preservation, in: “Control of Pig Reproduction”, Cole and Foxcroft, ed., Buttersworth, London.Google Scholar
  79. Puck, S. M., Haseltine, F. P. and Francke, U., 1981, Absence of H-Y antigen in an X-Y female with campomelic dysplasia, Hum. Genet. 817: 1.Google Scholar
  80. Robl, J. M., Gilligan, B., Critser, E. S. and First, N. L., 1985, Nuclear transplantation in mouse embryos: assessment of recipient cell stage, Biol. Reprod. (submitted).Google Scholar
  81. Rossant, J., Vijh, M., Siracusa, L. D. and Chapman, V. M., 1983, Identification of embryonic cell lineages in histological sections of chimeras between mus-muscuius and mus caroli, J. Embryol. Exp. Morph. 73: 179.PubMedGoogle Scholar
  82. Schnieke, A., Harbers, K. and Jaenisch, R., 1983, Embryonic lethal mutation in mice induced by retrovirus insertion in the α1 collagen gene, Nature 304: 315.PubMedCrossRefGoogle Scholar
  83. Silvers, W. K., Billingham, R. E. and Sanford, B. H., 1968, H-Y antigen serological detectable male antigen and sex determination. Cell 28: 439.CrossRefGoogle Scholar
  84. Singer, D. S., Otero, R. C. D., Sotz, M. L., Osborne, B., Socks, D. and Rudikoff, S., 1982, Characterization of a porcine genomic clone encoding a major histocompatibility antigen: Expression in mouse L cells, Proc. Natl. Acad. Sci. 79: 1403.PubMedCrossRefGoogle Scholar
  85. Sirard, M. A., Lambert, R. D., Guoy, P., Menard, D. P. and Bedoya, M., 1985a, In vivo and in vitro development of in vitro fertilized bovine follicular oocytes obtained by laparoscopy, Theriogenology 23: 230.CrossRefGoogle Scholar
  86. Sirard, M. A., Lambert, R. D., Menard, D. P. and Bedoya, M., 1985b, Pregnancies resulting from in vitro fertilization of bovine follicular oocytes following their incubation in rabbit oviduct and their transfer to the cows uterus, Biol. Reprod. 32: (Suppl. 1) 99 (abstract 124).Google Scholar
  87. Smith, R. S. and McLaren, A., 1977, Factors affecting the time of formation of the mouse blastocoele. J. Embryol. Exp. Morphol. 41: 79.PubMedGoogle Scholar
  88. Sorge, J., Wright, D., Erdman, V. D. and Cutting, A. E., 1985, Amphotrophic retrovirus vector system for human cell gene transfer. Mol. Cell. Biol. 4: 1730.Google Scholar
  89. Spearow, Jimmy L., 1984, Mechanism of action of genes controlling reproduction, in: “Genetics of Reproduction in Sheep”, R. B. Land and D. W. Robinson, eds., Buttersworth, London.Google Scholar
  90. Staigmiller, R. B. and Moor, R. M., 1984, Effect of follicle cells on the maturation and developmental competence of ovine oocytes matured outside the follicle, Gamete Research 9: 221.CrossRefGoogle Scholar
  91. Tarkowski, A. K., 1965, Preimplantation Stages of Pregnancy, G. E. W. Walstenholme and M. O’Connor, eds., Churchille Livingston, London.Google Scholar
  92. Tarkowski, A. K. and Wroblewska, J., 1967, Development of blastomeres of mouse eggs isolated at the 4 and 8 cell stage, J. Embryol. exp. Morph. 18: 155.PubMedGoogle Scholar
  93. Thibault, C., Gerard, M. and Menezo, Y., 1975, Acquisiton per 1’ oocyte de lapine et de veau du Facteur de decondensation du noyau du spermatozolde fecondant (MPGF), Ann. Biol. Anim. Bioch. Biophys. 15: 705.CrossRefGoogle Scholar
  94. Tsafriri, A. and Channing, C. P., 1975, An inhibitory influence of granulosa cells and follicular fluid upon porcine oocyte meiosis in vitro, Endocrinology 96: 922.PubMedCrossRefGoogle Scholar
  95. Wachtel, S. S., 1983, H-Y Antigen and the Biology of Sex Determination. Grune Stratton, NY.Google Scholar
  96. Wachtel, S. S., 1984, H-Y antigen in a study of sex determination and control of sex ratio, Theriogenology 21: 18.CrossRefGoogle Scholar
  97. Wagner, E. F., Covarrubias, L., Steward, T. A. and Mintz, B., 1983, Prenatal lethalities in mice homozygous for human growth hormone gene sequences integrated in the germ line, Cell 25: 647.CrossRefGoogle Scholar
  98. Wall, R. J., Pursel, V. G., Hammer, R. E. and Brinster, R. L., 1985, Development of porcine ova that were centrifuged to permit visualization of pronuclei and nuclei, Biol. Reprod. 32: 645.PubMedCrossRefGoogle Scholar
  99. Westergaard, L., Byskov, A. G., Andersen, C. Y., Grinsted, J. and McNatty, K. P., 1984, Is resumption of meiosis in the human preovulatory oocyte triggered by a meiosis-inducing substance (MIS) in the follicular fluid? Fertil. and Steril. 41: 337.Google Scholar
  100. White K. L., Lindner, G. M., Anderson, G. B. and Bon Durant, R. H., 1982, Survival after transfer of sexed mouse embryos exposed to H-Y antisera, Theriogenology 18: 655.CrossRefGoogle Scholar
  101. White, K. L., Lindner, G. M., Anderson, G. B. and Bon Durant, R. H., 1983, Cytolytic and fluorescent detection of H-Y antigen on pre implantation mouse embryos, Theriogenology 19: 701.PubMedCrossRefGoogle Scholar
  102. White, K. L., Bradbury, M. W., Anderson, G. B. and Bon Durant, R. H., 1984, Immunofluorescent detection of a male specific factor on preimplantation bovine embryos, Theriogenology 21: 275 (abstract).CrossRefGoogle Scholar
  103. White, K. L., Anderson, G. B., Berger, P. J., Bon Durant, R. H. and Pashen, R. L., 1985, Expression of a male-specific factor (H-Y antigen) on preimplantation porcine embryos. Proc. Amer. Soc. Anim. Sci. Aug. 1985Google Scholar
  104. Willadsen, S. M., 1982, Micromanipulation of embryos of the large domestic species, in: “Mammalian Egg Transfer”, C. E. Adams, ed., CRC Press, Boca Raton, FL.Google Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • N. L. First
    • 1
  • E. S. Critser
    • 1
  • J. M. Robl
    • 1
  1. 1.Department of Meat and Animal ScienceUniversity of WisconsinMadisonUSA

Personalised recommendations