Skip to main content

Conditio Sine Qua Non for de Novo Emergence of New Genes and the Concept of Primordial Building Blocks

  • Chapter
Genetics, Development, and Evolution

Part of the book series: Stadler Genetics Symposia Series ((SGSS))

Abstract

So long as a particular vital function is assigned to the single gene locus in the genome, all function-altering mutations are diligently eliminated by natural selection. Thus, the mechanism of gene duplication emerges as the prime means to create new genes with previously nonexistent functions (Ohno, 1970). Redundant copies of the existing gene created by this mechanism are largely ignored by natural selection, and while being ignored, they are free to accumulate function-altering mutations to emerge as new genes endowed with new functions. Indeed, the very> fact that nearly all the existing genes can be considered as members of different families by propinquity of their descents reveals the prime role this mechanism played in evolution; e.g., the serine protease family, β2-microglobulin family. Yet, this mechanism is very slow, inefficient and cumbersome as shall be pointed out shortly. Therefore, this mechanism is unfit to fulfill the organism’s need to cope with rapidly changing environments. In this paper, we shall point out that under certain conditions, new genes with new roles can emerge in a flash by two novel means.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alexander, F., Young, P.R., and Tilghman, S.M., 1984, Evolution of the albumin:α-fetoprotein ancestral gene from the amplification of a 27 nucleotide sequence, J. of Mol. Biol., 173:159–174

    Google Scholar 

  • Bowman, H., Hermodson, M., Hammond, C.A. and Motulsky, A.G., 1976, Analbuminemia in an American Indian girl, Clin. Genet., 9:513–526.

    Article  Google Scholar 

  • Chien, Y., Gascoigne, N.R.J., Kavaler, J., Lee, N.E., and Davis, M.M., 1984, Somatic recombination in a murine T-cell receptor gene, Nature, 309:322–326.

    Article  PubMed  CAS  Google Scholar 

  • Chou, P.Y., and Fasman, G.D., 1978, Empirical predictions on protein conformation, Ann. Rev. Biochem., 47:251–276.

    Article  PubMed  CAS  Google Scholar 

  • Dayhoff, M.O., ed., 1972, “Atlas of Protein Sequence and Structure,” National Biomedical Research Foundation, Silver Springs, Maryland.

    Google Scholar 

  • DeVries, A.L., 1982, Biological antifreeze agents in cold water fishes, Comp. Biochem. Biophysiol., 73A:627–640.

    Article  CAS  Google Scholar 

  • Ferris, S.D., and Whitt, G.S., 1977, Loss of duplicate gene expression after polyploidisation, Nature, 265:258–260.

    Article  PubMed  CAS  Google Scholar 

  • Gojobori, T., and Yokoyama, S., 1985, Evolutionary rates of c-and v-mos genes, Proc. Natl. Acad. Sci., USA, in press.

    Google Scholar 

  • Hansen, T.H., and Shreffler, D.C., 1976, Characterization of a constitutive variant of the murine serum protein allotype, Slp., J. Immunol., 117:1507–1513.

    PubMed  CAS  Google Scholar 

  • Hoog, C., and Wieslander, L., 1984, Different evolutionary behavior of structually related, repetitive sequences occuring in the same Balbiani ring gene of Chiranomus tentans, Proc. Natl. Acad. Sci. USA, 81:5165–5169.

    Article  PubMed  CAS  Google Scholar 

  • Kabat, E.A., Wu, T.T., Bilofsky, H., Reid-Miller, M., and Perry, H., 1983, Sequences of proteins of immunological interest., U.S. Dept. of Health and Human Serv.’s, Natl. Inst, of Health, Bethesda, MD.

    Google Scholar 

  • Kinoshita, S., Negoro, S., Murayama, M., Bisaria, V.S., Sawada, S., and Okada, H., 1977, 6-amino hexanoic acid cyclic dimer hydrolase. A new cyclic amide hydrolase produced by Acromobacter guttatus KI 72, Eur. J. Biochem, 80:489–495.

    Article  PubMed  CAS  Google Scholar 

  • Kinoshita, S., Terada, T., Taniguchi, T., Takene, Y., Masuda, S., Matsunaga, N., and Okada, H., 1981, Purification and characterization of 6-aminohexonic-acid-oligomer hydrolase of Flavobacterium sp. KI72, Europ. J. Biochem., 116:547–551.

    Article  PubMed  CAS  Google Scholar 

  • Mostov, K.E., Friedlander, M., and Blobel, G., 1984, The receptor for transepithelial transport of IgA and IgM contains multiple immunoglobulin-like domains, Nature, 308:37–43.

    Article  PubMed  CAS  Google Scholar 

  • Muskavitch, M.A.T., and Hogness, D.S., 1982, An expandable gene that encodes a Drosophila glue protein is not expressed in variants lacking remote upstream sequences, Cell, 29:1041–1051.

    Article  PubMed  CAS  Google Scholar 

  • Nagase, S., Simamune, K., and Shumiya, S., 1979, Albumin-deficient rat mutant, Science, 205:590–591.

    Article  PubMed  CAS  Google Scholar 

  • Nishida, Y., Kataoka, T., Ishida, N., Nakai, S., Kishimoto, T., Bottcher, I., and Honjo, T., 1981, Cloning of mouse immunoglobulin ε gene and its location within the heavy chain gene cluster, Proc. Natl. Acad. Sci. USA, 78:1581–1585.

    Article  PubMed  CAS  Google Scholar 

  • Ohno, S., 1970, “Evolution by Gene Duplication,” Springer-Verlag, Heidelberg-Berlin-New York.

    Google Scholar 

  • Ohno, S., 1972, So much “junk” DNA in our genome, in: “Evolution of Genetic Systems,” H.H. Smith, ed., Brookhaven Symp. No. 26, Gordon and Breach, Inc., New York-London-Paris, pp. 366–370.

    Google Scholar 

  • Ohno, S., 1981, Original domain for the serum albumin family arose from repeated sequences, Proc. Natl. Acad. Sci. USA, 78:7657–7661.

    Article  PubMed  CAS  Google Scholar 

  • Ohno, S., 1984a, Birth of a unique enzyme from an alternative reading frame of the preexisted internally repetitious coding sequence, Proc. Natl. Acad. Sci. USA, 81:2421–2425.

    Article  PubMed  CAS  Google Scholar 

  • Ohno, S., 1984b, Segmental homology and internal repetitiousness identified in putative nucleic acid polymerase and human hepatitis B surface antigen of human hepatitis B virus, Proc. Natl. Acad. Sci. USA, 81:3781–3785.

    Article  PubMed  CAS  Google Scholar 

  • Ohno, S., Matsunaga, T., and Wallace, R.B., 1982, Identification of the 48-base-long primoridal building block sequence of mouse immunoglobulin variable region genes, Proc. Natl. Acad. Sci. USA, 79:1999–2002.

    Article  PubMed  CAS  Google Scholar 

  • Ohno, S., Matsunaga, T., Epplen, J.T., Itakura, K., and Wallace, R.B., 1982, Identification of the 45-base-long primordial building block of the entire class I major histocompatibility complex antigen gene, Proc. Natl. Acad. Sci. USA, 79:6342–6346.

    Article  PubMed  CAS  Google Scholar 

  • Ohno, S., and Epplen, J., 1983, The primitive code and repeats of base oligomers as the primordial protein-encoding sequence, Proc. Natl. Acad. Sci. USA, 80:3391–3395.

    Article  PubMed  CAS  Google Scholar 

  • Ohno, S., and Yazaki, A., 1983, Simple construction of human c-myc gene implicated in B-cell neoplasma and its relationship with avian v-myc and human lymphokins, Scand. J. Immunol., 18:373–388.

    Article  PubMed  CAS  Google Scholar 

  • Ohno, S., Matsunaga, T., and Lee, A.D., 1984, The invariably present Tryptophane loop as the core of all divergent antigen-binding pockets, Scand. J. Immunol., 20:377–388.

    Article  PubMed  CAS  Google Scholar 

  • Okada, H., Negoro, S., Kumura, H., and Nakamura, S., 1983, Evolutionary adaptation of plasmid-encoded enzymes for degrading nylon oligomers, Nature, 306:203–206.

    Article  PubMed  CAS  Google Scholar 

  • Saito, H., Kranz, D.M., Takagaki, Y., Hayday, A., Eisen, H.N., and Tonegawa, S.,1984, Complete primary structure of a heterodimeric T-cell receptor deduced from cDNA sequences, Nature, 309:757–762.

    Article  PubMed  CAS  Google Scholar 

  • Saul, F.A., Amzel, L.M., and Poljak, R.J., 1978, Preliminary refinement and structural analysis of the Fab fragments from human immunoglobulin New at 2.0 A resolution, J. Biol. Chem., 253:585–597.

    PubMed  CAS  Google Scholar 

  • Shimizu, A., Takahashi, N., Yamawaki-Kataoka, Y., Nishida, Y., Kataoka, T., and Honjo, T., 1981, Ordering of mouse immunoglobulin heavy chain genes by molecular cloning, Nature, 289:149–153.

    Article  PubMed  CAS  Google Scholar 

  • Siu, G., Clark, S.P., Yoshikai, Y., Malissen, M., Yanagi, Y., Strauss, E., Mak, T., and Hood, L., 1984, The human T-cell antigen receptor is encoded by variable diversity and joining gene segments that rearrange to generate a complete V gene, Cell, 37:393–401.

    Article  PubMed  CAS  Google Scholar 

  • Sumegi, J., Wieslander, L., and Daneholt, B., 1982, A hierachic arrangement of the repetitive sequences in the Balbi-ani ring 2 gene of Chivonomus tentans, Cell, 30:579–587.

    Article  PubMed  CAS  Google Scholar 

  • Tanabe, Y., 1980, Phylogenetic relationships of dog breeds especially of Japanese native dog breeds determined by the blood protein polymorphisms, Reports of Japan. Soc. Res. on Native Stocks., 9:169–227.

    Google Scholar 

  • Travers, P., Blundell, T.L., Sternberg M.J.E., and Bodmer, W.F., 1984, Structural and evolutionary analysis of HLA-D-region products, Nature, 310:235–238.

    Article  PubMed  CAS  Google Scholar 

  • Twining, S.S., and Attassi, M.Z., 1978, Antibody-combining sites can be mimicked synthetically: surface-simulation synthesis of the immunoglobulin New combining site of the γ-hydroxyl derivative of vitamin κ1, J. Biol. Chem., 253:5259–5262.

    PubMed  CAS  Google Scholar 

  • Yamada, Y., Avvedimento, V.E., Murdryj, M., Ohkubo, H., Vogeli, G., Irani, M., Pastan, I., and Crombrugge, B. de, 1980, The collagen gene: evidence for its evolutionary assembly by amplification of DNA segment containing an exon of 54 BP, Cell, 22:287–292.

    Article  Google Scholar 

  • Yazaki, A., and Ohno, S., 1983, The recurrence of 49 base deca-mers, nonomers and octamers within mouse Ig CμH genes and its primordial building block, Proc. Natl. Acad. Sci. USA, 80:2338–2340.

    Article  Google Scholar 

  • Ycas, M., 1972, De novo origin of periodic proteins, J. Mol. Evol., 2:17–27.

    Article  PubMed  CAS  Google Scholar 

  • Zinkernagel, R.M., and Doherty, P.D., 1974, Immunological surveillance against altered self components by sensitized T-lymphocytes in lymphocytic choriomeningitis, Nature, 251:547–549.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Plenum Press, New York

About this chapter

Cite this chapter

Ohno, S., Mori, N., Matsunaga, T. (1986). Conditio Sine Qua Non for de Novo Emergence of New Genes and the Concept of Primordial Building Blocks. In: Gustafson, J.P., Stebbins, G.L., Ayala, F.J. (eds) Genetics, Development, and Evolution. Stadler Genetics Symposia Series. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5137-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5137-5_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5139-9

  • Online ISBN: 978-1-4684-5137-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics