Skip to main content

The Role of Glutathione in the Toxicity of Xenobiotic Compounds: Metabolic Activation of 1,2-Dibromoethane by Glutathione

  • Chapter
Biological Reactive Intermediates III

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 197))

Abstract

Glutathione (GSH) is a ubiquitous tripeptide involved in cellular defense mechanisms and the metabolism of xenobiotic compounds. Detoxification of free radicals and activated oxygen species by direct reaction, as well as that mediated by the enzymic activity of glutathione peroxidase, is a well known and described biochemical function.Equally well known and described is the role of GSH in conjugation. Conjugation with GSH occurs nonenzymatically and through the action of GSH S-transferases. Leukotrienes, active autacoids thought to be involved in inflammatory processes, are formed by the conjugation of GSH with fatty acids derived from arachidonic acid. One important function of GSH S-transferases is the conjugation of GSH with certain xenobiotic compounds, thus enhancing excretion of the xenobiotic. Furthermore, activated metabolites produced from xenobiotic compounds by the action of mixed function oxygenase may also be conjugated with GSH. This occurs both directly and enzymatically. The net result of conjugation with active metabolites is detoxification of these reactive chemical species. In certain cases, the GSH conjugate may ultimately result in toxic reactions. Stepwise, enzymatic degradation of certain GSH conjugates may result in reactive intermediates that result in tissue injury. Some glutathione conjugates, for example, may be enzymatically toxified by the sequential actions of gamma-glutamyl transferase and cysteine conjugate beta-lyase (Dohn and Anders, 1982). Other GSH conjugates may undergo intramolecular rearrangement to unstable intermediates that also result in toxic reactions. For example, the conjugation of vicinaldihaloalkanes may result in an intramolecular rearrangement to a reactive, transitory episulfonium ion (van Bladeren et al., 1980; Schasteen and Reed, 1981; Livesay and Anders, 1982).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Armstrong, D.J., Kutob, R. and Sipes, I.G. Deuterium isotope effect on the expiration and tissue distribution of 1,2-dibromoethane. The Toxicologist 5: 174, 1985.

    Google Scholar 

  • Brodie, B.B., Reid, W., Cho, A.K., Sipes, G., Krisha, G. and Gillette, J.R. Possible mechanism of liver nicrosis caused by aromatic organic compounds. Proc. Nat’l. Acad. Sci. U.S.A. 68: 160–164, 1971.

    Article  CAS  Google Scholar 

  • Clark, H.G., Cropp, P.L., Smith, J.N., Speir, T.W. and Tan, B.J.Photometric determination of methyl parathion GSH Smethyltransferase. Pestic. Biochem. Physiol. 6: 126–131, 1976.

    Article  CAS  Google Scholar 

  • Dohn, D.R. and Anders, M.W. The enzymatic reaction of chlorotrifluoroethylene with glutathione. Biochem. Biophys. Res. Comm. 109:1339–1345, 1982.

    Article  PubMed  CAS  Google Scholar 

  • Edwards, K., Jackson, H., and Jones, A.R. Studies with alkylating esters-II. A chemical interpretation through metabolic studies of the antifertility effects of ethylene dimethanesulphonate and ethylene dibromide. Biochem. Pharmacol. 19: 1783–1789, 1970.

    Article  PubMed  CAS  Google Scholar 

  • Gandolfi, A.J., Nagle, R.B., Soltis, J.J. and Plescia, F.H. Nephrotoxicity of halogenated vinyl cysteine compounds. Res. Comm. Chem. Path. Pharmacol. 33:249–261, 1981.

    CAS  Google Scholar 

  • Hill, D.L., Shih, T.-W., Johnston, T.P. and Struck, R.F. Macromolecular binding and metabolism of the carcinogen 1,2-dibromoethane. Cancer Res. 38:2438–2442, 1978.

    PubMed  CAS  Google Scholar 

  • Jollow, D.J., Mitchell, J.R., Zampaglione, N. and Gillette, J.R. Bromobenzene induced liver necrosis. Protective role of glutathione and evidence for 3,4-bromobenzene oxide as the hepatotoxic metabolite. Pharmacology 11:151–169, 1974.

    Article  PubMed  CAS  Google Scholar 

  • Kluwe, W.M., McNish, R., Smithson, K. and Hook, J.B. Depletion by 1,2-dibromoethane, 1,2-dibromo-3-chloropropane, tris (2,3-dibromopropyl) phosphate and hexachloro-1,3-butadiene of reduced nonprotein sulfhydryl groups in target and non-target organs. Biochem. Pharmacol. 30:2265–71, 1981.

    Article  PubMed  CAS  Google Scholar 

  • Kohn, K.W., Erickson, L.C., Ewig, R.A. and Friedman, C.A. Fractionation of DNA from mammalian cells by alkaline elution. Biochem. 15:4629–4637, 1976.

    Article  CAS  Google Scholar 

  • Kowalski, B., Brittebo, E.B. and Brandt, I. Epithelial binding of 1,2-dibromoethane (EDB) in the respiratory and upper alimentary tracts of mice and rats. Cancer Res. 45:2616–2625, 1985.

    PubMed  CAS  Google Scholar 

  • Letz, G.A., Pond, S.M., Osterloh, J.D., Wade, R.L. and Becker, C.E. Two fatalities after acute occupational exposure to ethylene dibromide. J. Amer. Med. Assoc. 252:2428–2431, 1984.

    Article  CAS  Google Scholar 

  • MacFarland, R.T., Gandolfi, A.J. and Sipes, I.G. Extra-hepatic GSHdependent metabolism of 1,2-dibromoethane (DBE) and 1,2-dibromo-3-chloropropane (DBCP) in the rat and mouse. Drug Chem. Toxicol. 7:213–227, 1984.

    Article  PubMed  CAS  Google Scholar 

  • Nachtomi, E. The metabolism of ethylene dibromide in the rat. The enzymic reaction with glutathione in vitro and in vivo. Biochem. Pharmacol. 19:2853–2860, 1970.

    Article  PubMed  CAS  Google Scholar 

  • NIOSH, National Institute for Occupational Safety and Health, Criteria for a recommended standard: occupational exposure to ethylene dibromide. DHEW (NIOSH) Publication No. 77–221. National Institute for Occupational Safety and Health, 1977.

    Google Scholar 

  • Olson, W., Habermann, R., Weisburger, E., Ward, J., and Weisburger, J. Brief communication: induction of stomach cancer in rats and mice by halogenated aliphatic fumigants. J. Natl. Cancer Inst. 51 (6): 1933, 1973.

    Google Scholar 

  • Ozawa, N. and Guengerich, F.P. Evidence for formation of an S-(2-(N7-guanyl)ethyl) glutathione adduct in glutathione-mediated binding of the carcinogen 1,2-dibromoethane to DNA. Proc. Nat’l. Acad. Sci. U.S.A. 80: 5266–5270, 1983.

    Article  PubMed  CAS  Google Scholar 

  • Rowe, V., Spencer, H., McCollister, D., Hollingsworth, R., and Adams, E. Toxicity of ethylene dibromide determined on experimental animals. A.J.A. Arch. Ind. Hyg. Occupational Med. 6: 158–73, 1952.

    CAS  Google Scholar 

  • Schasteen, C.S. nd Reed, D.J. The mechanism of degradation by hydrolysis of S-(2-haloethyl)-cysteine analogs. The Pharmacologist 23: 176, 1981.

    Google Scholar 

  • Shih, T.-W. and Hill, D.L. Metabolic activation of 1,2-dibromoethane by glutathione transferase and by microsomal mixed function oxidase: further evidence for formation of two reactive metabolites. Res. Comm. Chem. Pathol. Pharmacol. 33: 449–461, 1981.

    CAS  Google Scholar 

  • Short, R.D., Winston, J.M., Hong, C.-B., Minor, J.L., Lee, C.-C. and Seifter, J. Effects of ethylene dibromide on reproduction in male and female rats. Toxicol. Appl. Pharmacol. 49: 97–105, 1979.

    Article  PubMed  CAS  Google Scholar 

  • Sundheimer, D.W., White, R.D., Brendel, K. and Sipes, I.G. The bioactivation of 1,2-dibromoethane in rat hepatocytes: Covalent binding to nucleic acid. Carcinogenesis 3: 1129–1133, 1982.

    Article  PubMed  CAS  Google Scholar 

  • van Bladeren, P.J., Breimer, D.D., Rotteveel-Smijs, G.M.T. and Mohn, G.R. Mutagenic activation of dibromoethane and diiodomethane by mammalian microsomes and glutathione S-transferases. Mut. Res. 24: 341–346, 1980a.

    Google Scholar 

  • van Bladeren, P.J., Breimer, D.D., Rotteveel-Smijs, G.M.T., de Jong, R.A.W., Buijs, W., van der Gen, A. and Mohr, G.R. The role of glutathione conjugation in the mutagenicity of 1,2-dibromoethane. Biochem. Pharmacol. 29: 2975–2982, 1980b.

    Article  PubMed  Google Scholar 

  • van Bladeren, P.J., van der Gen, A., Breimer, D.D. and Mohn, G.R. Stereoselective activation of vicinal dihalogen compounds to mutagens by glutathione conjugation. Biochem. Pharmacol. 28: 2521–2524, 1979.

    Article  PubMed  Google Scholar 

  • van Bladeren, P.J., Breimer, D.D., Rotteveel-Smijs, G.M.T., de Knijff, P., Mohn, G.R., Buis, W., van Meeteren-Wachli, B. and van der Gen, A. The relation between the structure of vicinal dihalogen compounds and their mutagenic activation via conjugation to glutathione. Carcinogenesis 2: 499–503, 1981.

    Article  PubMed  Google Scholar 

  • Van Duuren, B., Goldschmidt, B., Loewengart, G., Smith, A., Melchionne, S., Seidman, I., and Roth, D. Carcinogenicity of halogenated olefinic and aliphatic hydrocarbons in mice. J. Natl. Cancer Inst. 63 (6): 1433–1438, 1979.

    PubMed  Google Scholar 

  • White, R.D., Petry, T.W. and Sipes, I.G.The bioactivation of 1,2-dibromoethane in rat hepatocytes: deuterium isotope effect. Ghem.-Biol. Interact 49: 225–233, 1984.

    Article  CAS  Google Scholar 

  • White, R.D., Gandolfi, A.J., Bowden, G.T. and Sipes, I.G. Deuterium isotope effect on the metabolism and toxicity of 1,2-dibromoethane. Toxicol. Appl. Pharmacol. 69: 170–178, 1983.

    Article  PubMed  CAS  Google Scholar 

  • White, R.D., Sipes, I.G., Gandolfi, A.J. and Bowden, G.T. Characterization of the hepatic DNA damage caused by 1,2-dibromoethane using the alkaline elution technique. Carcinogenesis 2: 839–844, 1981.

    Article  PubMed  CAS  Google Scholar 

  • Wiersma, D.A. and Sipes, I.G. Effect of dibromoethane and dichloroethane on the nonprotein sulfhydryl content of rat organs. The Toxicologist 3: 97, 1983a.

    Google Scholar 

  • Wiersma, D.A. and Sipes, I.G. Metabolism of 1,2-dibromoethane by cytosol of rat liver, forestomach and glandular stomach. Tox. Lett. 18 (Suppl 1): 155, 1983b.

    Article  Google Scholar 

  • Wiersma, D.A., Schnellmann, R.G. and Sipes, I.G. Human liver microsomal and cytosolic metabolic activation of 1,2-dibromoethane. The Pharmacologist 25: 104, 1983.

    Google Scholar 

  • Wong, L.C.K., Winston, J.M., Hong, C.B. and Plotnick, H. Carcinogenicity and toxicity of 1,2-dibromoethane in the rat. Toxicol. Appl. Pharmacol. 63: 155–165, 1982.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Plenum Press, New York

About this chapter

Cite this chapter

Sipes, I.G., Wiersma, D.A., Armstrong, D.J. (1986). The Role of Glutathione in the Toxicity of Xenobiotic Compounds: Metabolic Activation of 1,2-Dibromoethane by Glutathione. In: Kocsis, J.J., Jollow, D.J., Witmer, C.M., Nelson, J.O., Snyder, R. (eds) Biological Reactive Intermediates III. Advances in Experimental Medicine and Biology, vol 197. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5134-4_44

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5134-4_44

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5136-8

  • Online ISBN: 978-1-4684-5134-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics