Skip to main content

Nephrotoxic Amino Acid and Glutathione S-Conjugates: Formation and Renal Activation

  • Chapter
Biological Reactive Intermediates III

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 197))

Abstract

The mechanisms by which chemicals produce tissue damage include, for example, biotransformation to reactive, electrophilic metabolites, initiation of lipid peroxidation, and formation of toxic, reduced oxygen metabolites. The liver, because of its abundant capacity for biotransformation, is frequently the target organ for chemicals whose toxicity is associated with bioactivation. Extrahepatic target organs are well known, and this toxicity may also be associated with target organ bioactivation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Beeler, T., and Churchich, J.E., 1976, Reactivity of the phosphopyridoxal groups of cystathionine, J. Biol. Chem., 251: 5267.

    PubMed  CAS  Google Scholar 

  • Bhattacharya, R.K., and Schultze, M.O., 1967, Enzymes from bovine and turkey kidneys which cleave S-(1,2-dichlorovinyl)-L-cysteine, Comp. Biochem. Physiol., 22: 723.

    CAS  Google Scholar 

  • Bhattacharya, R.K., and Schultze, M.O., 1973, Modification of polynucleotides by a fragment produced by enzymatic cleavage of S-(l,2-dichlorovinyl)-L-cysteine, Biochem. Biophys. Res. Commun., 53: 172.

    Article  PubMed  CAS  Google Scholar 

  • Boyd, M.R., and Dutcher, J.S., 1981, Renal toxicity due to reactive metabolites formed in situ in the kidney: Investigations with 4ipomeanol’in the mouse, J. Pharmacol. Exp. Ther., 216: 640.

    PubMed  CAS  Google Scholar 

  • Branchflower, R.V., Nunn, D.S., Highet, R.J., Smith, J.H., Hook, J.B., and Pohl, L.R., 1984, Nephrotoxicity of chloroform: Metabolism to phosgene by the mouse kidney, Toxicol. Appl. Pharmacol., 72: 159.

    Article  PubMed  CAS  Google Scholar 

  • Buckley, L.A., Clayton, J.W., Nagle, R.B. and Gandolfi, A.J., 1982, Chlorotrifluoroethylene nephrotoxicity in rats: A subacute study, Fund. Appl. Toxicol., 2: 181.

    Article  CAS  Google Scholar 

  • Carroll, W.R., Stacy, G.W., and du Vigneaud, V., 1949, A-Ketobutyric acid as a product in the enzymatic cleavage of cystathionine, J. Biol. Chem., 180: 375.

    PubMed  CAS  Google Scholar 

  • Dohn, D.R., and Anders, M.W., 1982, Assay of cysteine conjugate ß-lyase activity with S-(2-benzothiazolyl)cysteine as the substrate, Anal. Biochem., 120: 379.

    Article  PubMed  CAS  Google Scholar 

  • Dohn, D.R., Quebbemann, A.J., Borch, R.F., and Anders, M.W., 1985, Enzymatic reaction of chlorotrifluoroethene with glutathione: 19F NMR evidence for stereochemical control of the reaction, Biochemistry, in press.

    Google Scholar 

  • Elfarra, A.A., and Anders, M.W., 1984, Renal processing of glutathione conjugates. Role in nephrotoxicity, Biochem. Pharmacol., 33: 3729.

    Article  PubMed  CAS  Google Scholar 

  • Elfarra, A.A., and Anders, M.W., 1985, S-(1,2-Dichlorovinyl)-Lhomocysteine (DCVHC), an analogue of the renal toxin S-(1,2-dichlorovinyl)-L-cysteine ( DCVC), is a potent nephrotoxin, Fed. Proc., 44: 1624.

    Google Scholar 

  • Elfarra, A.A., Beggs, R.B., and Anders, M.W., 1985, Structurenephrotoxicity relationships of S-(2-chloroethyl)-DL-cysteine and analogs: Role for an episulfonium ion, J. Pharmacol. Exp. Ther., 233: 512.

    PubMed  CAS  Google Scholar 

  • Elfarra, A.A., Jakobson, I., and Anders, M.W., 1985a, Mechanism of S(1,2-dichlorovinyl)glutathione-induced nephrotoxicity, Biochem. Pharmacol., in press.

    Google Scholar 

  • Hassall, C.D., Gandolfi, A.J., Duhamel, R.C., and Brendel, K., 1984, The formation and biotransformation of cysteine conjugates of halogenated ethylenes by rabbit renal tubules, Chem.-Biol. Interact., 49: 283.

    Article  PubMed  CAS  Google Scholar 

  • Hook, J.B., McCormack, K.M., and Kluwe, W.M., 1979, Biochemical mechanisms of nephrotoxicity, Rev. Biochem. Toxicol., 1: 53.

    CAS  Google Scholar 

  • Jakoby, W.B., 1978, The glutathione transferases in detoxification, in:“Functions of Glutathione in Liver and Kidney,” H. Sies and A. Wendel, Springer-Verlag, New York, p. 157.

    Google Scholar 

  • Kuo, C-H., Braselton, W.E., and Hook, J.B., 1982, Effect of phenobarbital on cephaloridine toxicity and accumulation in rabbit and rat kidneys, Toxicol. Appl. Pharmacol., 64: 244.

    Article  PubMed  CAS  Google Scholar 

  • Lash, L.H., Dohn, D.R., Elfarra, A.A., and Anders, M.W., 1985, Nephrotoxicity of glutathione and cysteine conjugates in isolated rat kidney cells, Pharmacologist, 27: 227.

    Google Scholar 

  • Monks, T.J., Lau, S.S., Highet, R.J., and Gillette, J.R., 1985, Glutathione conjugates of 2-bromohydroquinone are nephrotoxic, Drug Metab. Disp., 13:in press.

    Google Scholar 

  • Morgenstern, R., and DePierre, J.W., 1983, Microsomal glutathione transferase, Eur. J. Biochem., 134: 591.

    Article  PubMed  CAS  Google Scholar 

  • Nachtomi, E., Alumot, E., and Bondi, A., 1966, The metabolism of ethylene dibromide in the rat. I. Identification of detoxification products in urine. Israel J. Chem., 4: 239.

    CAS  Google Scholar 

  • Nash, J.A., King, L.J., Lock, E.A., and Green, T., 1984, The metabolism and disposition of hexachloro-1:3-butadiene in the rat and its relevance to nephrotoxicity, Toxicol. Appl. Pharmacol., 73: 124.

    CAS  Google Scholar 

  • Odum, J., and Green, T., 1984, The metabolism and nephrotoxicity of tetrafluoroethylene in the rat, Toxicol. Appl. Pharmacol., 76: 306.

    CAS  Google Scholar 

  • Parker, V.H., 1965, A biochemical study of the toxicity of Sdichlorovinyl-L-cysteine, Food Cosmet. Toxicol., 3: 75.

    Article  PubMed  CAS  Google Scholar 

  • Potter, C.L., Gandolfi, A.J., Nagle, R.B., and Clayton, J.W., 1981, Effects of inhaled chlorotrifluoroethylene and hexafluoropropene on the rat kidney, Toxicol. Appl. Pharmacol., 59: 431.

    Article  PubMed  CAS  Google Scholar 

  • Rannug, U., Sundvall, A., and Ramel, C., 1978, The mutagenic effect of 1,2-dichloroethane on Salmonella typhimurium. I. Activation through conjugation with glutathione in vitro. Chem.-Biol. Interact., 20: 1.

    Article  PubMed  CAS  Google Scholar 

  • Reed, D.J., Ellis, W.W., and Meck, R.A., 1980, The inhibition of yglutamyltrannspeptidase and glutathione metabolism of isolated rat kidney cells by L-(aS,5S)-a-amino-3-chloro-4,5-dihydro-5isoxazoleacetic acid (AT-125; NSC-163501), Biochem. Biophys. Res. Commun., 94: 1273.

    Article  CAS  Google Scholar 

  • Rush, G.F., Smith, J.H., Newton, J.F., and Hook, J.B., 1984, Chemically induced nephrotoxicity: Role of metabolic activation. CRC Crit. Rev. Toxicol., 13: 99.

    Article  CAS  Google Scholar 

  • Ryle, C.M., and Mantle, T.J., 1984, Studies on the glutathione Stransferase activity associated with rat liver mitochondria, Biochem. J., 222: 553.

    PubMed  CAS  Google Scholar 

  • Stonard, M.D., 1973, Further studies on the site and mechanism of action of S-(1,2-dichlorovinyl)-L-cysteine and S-(1,2-dichlorovinyl)-3mercaptopropionic acid in rat liver, Biochem. Pharmacol., 22: 1329.

    Article  PubMed  CAS  Google Scholar 

  • Stonard, M.D., and Parker, V.H., 1971a, 2–0xoacid dehydrogenases of rat liver mitochondria as the site of action of S-(1,2-dichlorovinyl)-Lcysteine and S-(1,2-dichlorovinyl)-3-mercaptopropionic acid, Biochem. Pharmacol., 20: 2417.

    Article  CAS  Google Scholar 

  • Stonard, M.D., and Parker, V.H., 1971b, The metabolism of S-(1,2dichlorovinyl)-L-cysteine by rat liver mitochondria, Biochem. Pharmacol., 20: 2429.

    Article  PubMed  CAS  Google Scholar 

  • Terracini, B., and Parker, V.H., 1965, A pathological study on the toxicity of S-dichlorovinyl-L-cysteine, Food Cosmet. Toxicol., 3: 67.

    Article  PubMed  CAS  Google Scholar 

  • Wallach, D.P., 1960, The inhibition of gamma aminobutyric-alphaketoglutaric acid transaminase in vitro and in vivo by aminooxyacetic acid, Biochem. Pharmacol., 5: 166.

    Article  PubMed  CAS  Google Scholar 

  • Webb, W., Elfarra, A., Thom, R., and Anders, M., 1985, S-(2-Chloroethyl)DL-cysteine (CEC)-induced cytotoxicity: A role for the episulfonium ion, Pharmacologist, 27: 228.

    Google Scholar 

  • Wolf, C.R., Berry, P.N., Nash, J.A., Green, T., and Lock, E.A., 1984, Role of microsomal and cytosolic glutathione S-transferases in the conjugation of hexachloro-1:3-butadiene and its possible relevance to toxicity, J. Pharmacol. Exp. Ther., 228: 202.

    CAS  Google Scholar 

  • Yllner, S., 1971, Metabolism of 1,2-dichloroethane-14C in the mouse. Acta Pharmacol. Toxicol., 30: 257.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Plenum Press, New York

About this chapter

Cite this chapter

Anders, M.W., Lash, L.H., Elfarra, A.A. (1986). Nephrotoxic Amino Acid and Glutathione S-Conjugates: Formation and Renal Activation. In: Kocsis, J.J., Jollow, D.J., Witmer, C.M., Nelson, J.O., Snyder, R. (eds) Biological Reactive Intermediates III. Advances in Experimental Medicine and Biology, vol 197. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5134-4_43

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5134-4_43

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5136-8

  • Online ISBN: 978-1-4684-5134-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics