Skip to main content

Reactions of Oxaprozin-1-0-Acyl Glucuronide in Solutions of Human Plasma and Albumin

  • Chapter
Biological Reactive Intermediates III

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 197))

Abstract

Acyl glucuronides are major metabolites of many carboxylic acids including drugs, various chemicals, as well as endogenously formed compounds such as bilirubin and benzoic acid. Because of their susceptibility to nucleophilic attack acyl glucuronides are generally less stable than other glucuronides (1). Two reactions, hydrolysis and rearrangement (isomerization by acyl migration), contribute to this instability. Both reactions can occur at physiologic pH values. The extent to which they occur depends on the reactivity of the acyl glucuronide which in turn depends on the structure of its aglycone (2,3).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E.M. Faed, Properties of acyl glucuronides: implications for studies of the pharmacokinetics and metabolism of acidic drugs, Drug Metab Rev 15: 1213–1249 (1984).

    Article  PubMed  CAS  Google Scholar 

  2. F.W. Janssen, S.K. Kirkman, C. Fenselau, M. Stogniew, B.R. Hofmann, E.M. Young, and H.W. Ruelius, Metabolic formation of N- and 0-glucuronides of 3-(p-chlorophenyl)thiazolo-[3,2-a] benzimidazole-2-acetic acid, Drug Metab Dispos 10: 599–604 (1982).

    PubMed  CAS  Google Scholar 

  3. H.W. Ruelius, E.M. Young, S.K. Kirkman, R.T. Schillings, S.F. Sisenwine, and F.W. Janssen, Biological fate of acyl glucuronides in the rat, Biochem Pharmacol 34: 451–452 (1985).

    Article  CAS  Google Scholar 

  4. R. Gugler, The effect of disease on the response to drugs, in “Proceedings of the 7th International Congress of Pharmacology”, P. Duchéne-Mairwaz, ed., Pergamon Press, Oxford (1979).

    Google Scholar 

  5. E.M. Faed and E.G. McQueen, Plasma half-life of clofibric acid in renal failure, Br J Clin Pharmacol 7: 407–410 (1979).

    PubMed  CAS  Google Scholar 

  6. P.C. Smith, A.F. McDonagh, and L.Z. Benet, Covalent binding of zomepirac acyl glucuronide to albumin in healthy human volunteers, Hepatology 4: 1059 (1984).

    Google Scholar 

  7. A. Gautam, H. Seligson, E.R. Gordon, D. Seligson, and J.L. Boyer, Irreversible binding of conjugated bilirubin to albumin in cholestatic rats, J Clin Invest 73: 873–877 (1984).

    Article  PubMed  CAS  Google Scholar 

  8. A.F. McDonagh, L.A. Palma, J.J. Lauff, and T-W. Wu, Origin of mammalian biliprotein and rearrangement of bilirubin glucuronide in vivo in the rat, J Clin Invest 74: 763–770 (1984).

    Article  PubMed  CAS  Google Scholar 

  9. R.B. van Breemen and C. Fenselau, Acylation of albumin by 1–0-acyl glucuronides, Drug Metab Dispos 13: 318–320 (1985).

    PubMed  Google Scholar 

  10. F.W. Janssen, W.J. Jusko, S.T. Chiang, S.K. Kirkman, P.J. Southgate, A.J. Coleman and H.W. Ruelius, Metabolism and kinetics of oxaprozin in normal subjects, Clin Pharmacol Ther 27: 352–362 (1980).

    Article  PubMed  CAS  Google Scholar 

  11. F.W. Janssen, S.K. Kirwan, J.A. Knowles, and H.W. Ruelius, Disposition of 4,5-diphenyl-2-oxazolepropionic acid (oxaprozin) in beagle dogs and rhesus monkeys, Drug Metab Dispos 6: 465–475 (1978).

    PubMed  CAS  Google Scholar 

  12. A.J. Lewis, R.P. Carlson, J. Chang, S.C. Gilman, S. Nielson, M.E. Rosenthale, F.W. Janssen, and H.W. Ruelius, The pharmacological profile of oxaprozin, an antiinflammatory and analgesic agent with low gastrointestinal toxicity, Curr Ther Res 34: 777–794 (1983).

    CAS  Google Scholar 

  13. G.E. Means and M.L. Bender, Acetylation of human serum albumin by p-nitrophenyl acetate, Biochem 14: 4989–4994 (1975).

    Article  CAS  Google Scholar 

  14. F.D. Boudinot, C.A. Homon, W.J. Jusko, and H.W. Ruelius, Protein binding of oxazepam and its glucuronide conjugates to human albumin, Biochem Pharmacol 34: 2115–2121 (1985).

    Article  PubMed  CAS  Google Scholar 

  15. N. Ohta, Y. Kurono, and K. Ikeda, Esterase-like activity of human serum albumin II:reaction with N-transcinnamoylimidazoles, J Pharm Sci 72: 385–388 (1983).

    Article  PubMed  CAS  Google Scholar 

  16. Y. Kurono, T. Kondo, and K. Ikeda, Esterase-like activity of human serum albumin III: enantioselectivity in the burst phase of reaction with p-nitrophenyl a-methoxyphenyl acetate, Arch Biochem Biophys 227: 339–341 (1983).

    Article  PubMed  CAS  Google Scholar 

  17. P.C. Smith, J. Hasegawa, P.N.J. Langendijk, and L.Z. Benet, Stability of acyl glucuronides in blood, plasma and urine: studies with zomepirac, Drug Metab Dispos 13: 110–112 (1985).

    PubMed  CAS  Google Scholar 

  18. I. Sjöholm, B. Ekman, A. Kober, I. Ljungstedt-Pâhlman, B. Seiving, and T. Sjodin, Binding of drugs to human serum albumin. XI. The specificity of three binding sites as studied with albumin immobilized in microparticles, Mol Pharmacol 16: 767–777 (1979).

    PubMed  Google Scholar 

  19. S-W.M. Koh and G.E. Means, Characterization of a small apolar anion binding site of human serum albumin, Arch Biochem Biophys 192: 73–79 (1979)

    Google Scholar 

  20. N.P. Sollenne and G.E. Means, Characterization of a specific drug binding site of human serum albumin, Mol Pharmacol 15: 754–757 (1979)

    PubMed  CAS  Google Scholar 

  21. K.J. Fehske, W.E. Müller, U. Schlafer, and U. Wollert, Characterization of two important drug binding sites on human serum albumin, Prog Drug Protein Binding, Proc Lect Symp, 2nd 5–15 (1981)

    Google Scholar 

  22. W.E. Müller and U. Wollert, Benzodiazepines: specific competitors for the binding of L-tryptophan to human serum albumin, Naunyn-Schmiedeberg’s Arch Pharmacol 288: 17–27 (1975).

    Article  PubMed  Google Scholar 

  23. K.J. Fehske, W.E. Müller, and U. Wollert, A highly reactive tyrosine residue as part of the indole and benzodiazepine binding site of human serum albumin, Biochem Biophys Acta 577: 346–359 (1979).

    PubMed  CAS  Google Scholar 

  24. G.E. Means and H.L. Wu, The reactive tyrosine residue of human serum albumin: characterization of its reaction with diisopropylfluorophosphate, Arch Biochem Biophys 194: 526–530 (1979).

    Article  PubMed  CAS  Google Scholar 

  25. K.J. Fehske, W.E. Müller, and U. Wollert, Direct demonstration of the highly reactive tyrosine residue of human serum albumin located in fragment 299–585, Arch Biochem Biophys 205: 217–221 (1980)

    Article  PubMed  CAS  Google Scholar 

  26. B.J. Rowe and P.J. Meffin, Diisopropylfluorophosphate increases clofibric acid clearance: supporting evidence for a futile cycle, J Pharmacol Exp Ther 230: 237–241 (1984).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Plenum Press, New York

About this chapter

Cite this chapter

Ruelius, H.W., Kirkman, S.K., Young, E.M., Janssen, F.W. (1986). Reactions of Oxaprozin-1-0-Acyl Glucuronide in Solutions of Human Plasma and Albumin. In: Kocsis, J.J., Jollow, D.J., Witmer, C.M., Nelson, J.O., Snyder, R. (eds) Biological Reactive Intermediates III. Advances in Experimental Medicine and Biology, vol 197. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5134-4_42

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5134-4_42

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5136-8

  • Online ISBN: 978-1-4684-5134-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics