Skip to main content

Oxygen Radical Formation During Redox Cycling of Bleomycin-Fe(III) Catalyzed by NADPH-Cytochrome P-450 Reductase of Liver Microsomes and Nuclei

  • Chapter

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 197))

Abstract

Bleomycin, a glycopeptide antibiotic is successfully used in the chemotherapy of various tumors. It has been suggested that its anticancer activity is due to oxygen radicals formed by a reduced complex of bleomycin and iron ions (for review see Burger et al., 1981). A bleomycin-Fe(II)-complex damages DNA resulting in the formation of strand breaks and the release of free bases and malondialdehyde, the latter originating from the deoxyribose moiety of DNA (Giloni et al., 1981; Gutteridge et al., 1981). The bleomycin-Fe-complex can be reduced chemically or by xanthine oxidase (Sausville et al., 1978). Furthermore, increases in DNA damage have been observed when microsomes of different organs and NADPH were incubated with bleomycin and iron ions (Bickers et al., 1984; Trush et al., 1982; Yamanaka et al., 1978). We found that isolated liver microsomal NADPH-cytochrome P-450 reductase is able to catalyze bleomycinrelated DNA strand breaks and base and malondialdehyde release in the presence of ferric ions (Scheulen et al., 1981; Scheulen and Kappus, 1984). This has been confirmed and extended recently (Kilkuskie et al., 1984). Therefore, it is obvious that this enzyme is responsible for the effects observed in microsomes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arion, W. J., Schulz, L. O., Lange, A. J., Telford, J. N., and Walls, H. E., 1983, The characteristics of liver glucose-6-phosphatase in the envelope of isolated nuclei and microsomes are identical, J. Biol. Chem., 258: 12661.

    PubMed  CAS  Google Scholar 

  • Bachur, N. R., Gee, M. V., and Friedman, R. D., 1982, Nuclear catalyzed antibiotic free radical formation, Cancer Res., 42: 1078.

    PubMed  CAS  Google Scholar 

  • Bickers, D. R., Dixit, R., and Mukhtar, H., 1984, Enhancemant of bleomycinmediated DNA damage by epidermal microsomal enzymes, Biochim. Biophys. Acta, 781: 265.

    PubMed  CAS  Google Scholar 

  • Burger, R. M., Peisach, J., and Horwitz, S. B., 1981, Mechanism of bleomycin action: in vitro studies, Life Sci., 28: 715.

    Article  PubMed  CAS  Google Scholar 

  • Filser, J. G., Bolt, H. M., Muliawan, H., and Kappus, H., 1983, Quantitative evaluation of ethane and n-pentane as indicators of lipid peroxidation in vivo, Arch. Toxicol., 52: 135.

    Article  PubMed  CAS  Google Scholar 

  • Fleischer, S., and Fleischer, B., 1967, Removal and binding of polar lipids in mitochondria and other membrane systems, Meth. Enzymol., 10: 406.

    Article  CAS  Google Scholar 

  • Giloni, L., Takeshita, M., Johnson, F., Iden, Ch., and Grollman, A. P.,1981, Bleomycin-induced strand-scission of DNA, J. Biol. Chem., 256: 8608.

    PubMed  CAS  Google Scholar 

  • Grollman, A. P., Takeshita, M., Pillai, K. M. R., and Johnson, F., 1985, Origin and cytotoxic properties of base propenals derived from DNA, Cancer Res., 45: 1127.

    PubMed  CAS  Google Scholar 

  • Gutteridge, J. M. C., Rowley, D. A., and Halliwell, B., 1981, Superoxide-dependent formation of hydroxyl radicals in the presence of iron salts, Biochem. J., 199: 263.

    PubMed  CAS  Google Scholar 

  • Kappus, H., and Muliawan, H., 1982, Alkane formation during liver microsomal lipid peroxidation, Biochem. Pharmacol., 31: 597.

    Article  PubMed  CAS  Google Scholar 

  • Kennedy, K. A., Sligar, S. G., Polomski, L., and Sartorelli, A. C., 1982, Metabolic activation of mitomycin c by liver microsomes and nuclei, Biochem. Pharmacol., 31: 2011.

    Article  PubMed  CAS  Google Scholar 

  • Kilkuskie, R. E., Macdonald, T. L., and Hecht, S. M., 1984, Bleomycin may be activated for DNA cleavage by NADPH-cytochrome P-450 reductase, Biochemistry USA, 23: 6165.

    Article  CAS  Google Scholar 

  • Mirabelli, Ch. K., Huang, Ch.-H., Fenwick, R. G., and Crooke, S. T., 1985, Quantitative measurement of single-and double-strand breakage of DNA in Escherichia coli by the antitumor antibiotics bleomycin and talisomycin, Antimicrob. Agents Chemother., 27: 460.

    CAS  Google Scholar 

  • Romano, M., Facchinetti, T., and Salmona, M., 1983, Is there a role for nuclei in the metabolism of xenobiotica? Drug Metab. Rev., 14: 803.

    CAS  Google Scholar 

  • Sausville, E. A., Peisach, J., and Horwitz, S. B., 1978, Effect of chelating agents and metal ions on the degradation of DNA by bleomycin, Biochemistry, 17: 2740.

    Article  PubMed  CAS  Google Scholar 

  • Scheulen, M. E., and Kappus, H., 1984, The activation of oxygen by bleomycin is catalyzed by NADPH-cytochrome P-450 reductase in the presence of iron ions and NADPH, in: “Oxygen Radicals in Chemistry and Biology,” W. Bors, M. Saran, D77ait, eds., Walter de Gruyter & Co., Berlin, New York.

    Google Scholar 

  • Scheulen, M. E., Kappus, H., Thyssen D., and Schmidt, C. G., 1981, Redox cycling of Fe(III)-bleomycin by NADPH-cytochrome P-450 reductase, Biochem. Pharmacol., 30: 3385.

    Article  PubMed  CAS  Google Scholar 

  • Sinha, B. K., Trush, M. A., Kennedy, K. A., and Mimnaugh, E. G., 1984, Enzymatic activation and binding of adriamycin to nuclear DNA, Cancer Res., 44: 2892.

    PubMed  CAS  Google Scholar 

  • Swanson, M. A., 1955, Glucose-6-phosphatase from liver, Meth. Enzymol., 2: 541.

    Article  CAS  Google Scholar 

  • Trush, M. A., Mimnaugh, E. G., Ginsburg, E., and Gram, T. E., 1982, Studies on the interaction of bleomycin A2 with rat lung microsomes. II. Involvement of adventitious iron and reactive oxygen in bleomycin-mediated DNA chain breakage, J. Pharmacol. Exp. Ther., 221: 159.

    PubMed  CAS  Google Scholar 

  • Umezawa, H., Takita, T., Sugiura, Y., Otsuka, M., Kobayashi, S. and Ohno, M., 1984, DNA-bleomycin interaction - Nucleotide sequence-specific binding and cleavage of DNA by bleomycin, Tetrahedron, 40: 501.

    Article  CAS  Google Scholar 

  • Yamanaka, N., Kato, T., Nishida, K., and Ota, K., 1978, Enhancement of DNA chain breakage by bleomycin A2 in the presence of microsomes and reduced nicotinamide adenine dinucleotide phosphate, Cancer Res., 38: 3900.

    Google Scholar 

  • Yamazaki, I., 1977, Free radicals in enzyme-substrate reactions, in: “Free Radicals in Biology, III,” W. A. Pryor, ed., Academic lsress, New York, San Francisco, London.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Plenum Press, New York

About this chapter

Cite this chapter

Kappus, H., Mahmutoglu, I. (1986). Oxygen Radical Formation During Redox Cycling of Bleomycin-Fe(III) Catalyzed by NADPH-Cytochrome P-450 Reductase of Liver Microsomes and Nuclei. In: Kocsis, J.J., Jollow, D.J., Witmer, C.M., Nelson, J.O., Snyder, R. (eds) Biological Reactive Intermediates III. Advances in Experimental Medicine and Biology, vol 197. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5134-4_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5134-4_24

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5136-8

  • Online ISBN: 978-1-4684-5134-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics