Skip to main content

Comparison of the Metabolism of Benzene and Its Metabolite Phenol in Rat Liver Microsomes

  • Chapter
Biological Reactive Intermediates III

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 197))

Abstract

It has been known for many years that chronic exposure to benzene leads to bone marrow depression and aplastic anemia and in recent years it has become apparent that benzene can also be leukemogenic (Snyder, 1984). Benzene-induced bone marrow depression is caused by one or more metabolites of benzene (Snyder, et al., 1981). Cytochrane P-450 mediates the first step in benzene metabolism (Gonasun et al., 1973). The initial metabolite formed in the liver is thought to be benzene oxide (Jerina and Daly, 1974) which rearranges to form phenol. Johansson and Ingelmann-Sundberg (1983) suggested that benzene hydroxylation may occur as a result of hydroxyl radical formation during the partially uncoupled mixed function oxidase-mediated metabolism of benzene in which hydrogen peroxide is generated. Nevertheless, it is clear that the major metabolite of benzene., in vivo (Parke and Williams, 1953) and in vitro (Gonasun et al., 1973) is phenol. Because phenol, can be further hydroxylated it is both a product and a substrate in this system. The metabolism of a substrate, either in vivo or in vitro is in part controlled by the concentration at which it encounters the enzyme. In the metabolism of xenoblotic compounds another controlling factor is the type of cytochrome P-450 which metabolizes the compound and hence the importance of enzyme induction. The concentration of an intermediary metabolite such as phenol is a product of the rate at which it is produced and the rate of further metabolism. The issue can be further complicated if both the initial substrate and its metabolite undergo similar reactions and the two compete at the active site of the enzyme. Given this model, we report on some aspects of the metabolism of benzene and phenol.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andrews, L.S., Lee, E.W., Witmer, C.M., Kocsis, J.J., and Snyder, R. (1977). Effects of toluene on metabolism, disposition, and hematopoietic toxicity of (3H) benzene. Biochem. Pharmacol. 26: 293–300.

    Article  PubMed  CAS  Google Scholar 

  • Andrews, L.S., Sasame, H.A., and Gillette, J.R. (1979). 3H-Benzene metabolism in rabbit bone marrow Life Sciences 25, 567–572.

    CAS  Google Scholar 

  • Cooper, D.Y., Levin, S., Narasimhulu, S., and Rosenthal, O. (1965). Photochemical action spectrum of the terminal oxidase of mixed function oxidase systems. Science 147, 400–402.

    Article  PubMed  CAS  Google Scholar 

  • Cooper, D.Y., Schleyer, H., Rosenthal, O., Levin, S., Lu, A.Y., Kuntzman, R., and Conney, A.H. (1977). Inhibition by CO of hepatic benzo[a]pyrene hydroxylation and Its reversal by monochromatic Iight. Fur. J. Biochem. 74, 69–75.

    CAS  Google Scholar 

  • Cooper, D.Y., Schleyer, H., Leviln, S., Eisenhardt, R.H., Novack, B., and Rosenthal, O. (1979). The reevaluation of cytochrane p-450 as the terminal oxidase in hepatic microsomal mixed function oxidase catalyzed reactions Drug Metab. Rev. 10, 153–185.

    Article  PubMed  CAS  Google Scholar 

  • Gilmour, S. and Snyder, R. (1983a). Metabolism of benzene and phenol in rat liver microsomes. Fed. Proc. 42, 1136.

    Google Scholar 

  • Gilmour S. and Snyder, R. (1983b). Similarities in the microsomal metabolism of benzene and its metabolite phenol. The pharmacologist 25, 210.

    Google Scholar 

  • Golmer, L., Graf, H, and Ullrich, V. (1984). Characterization of the benzene monooxygenase in rabbit bone marrow. Biochem. Pharmacol. 33, 3597–3602.

    Article  Google Scholar 

  • Gonasun, L.M., Witmer, C.M., Kocsis, J.J., and Snyder, R. (1973). Benzene metabolism in mouse liver microsomes. Toxicol. Appl. Pharmacol. 26, 398–406.

    Article  PubMed  CAS  Google Scholar 

  • Greenlee, W.F., Chism, J.P., and Rickert, D.E. (1981a). A novel method for the separation and quantitation of benzene metabolites using high pressure liquid chromatography Anal. Biochem. 112, 367–370.

    Article  PubMed  CAS  Google Scholar 

  • Greenlee, W.F., Sun, J.S. and Bus, J.S. (1981b). A proposed mechanism of benzene toxicity: Formation of reactive intermediates from polyphenol metabolites. Toxicol. Appl. Pharmacol.59, 187–195.

    Article  CAS  Google Scholar 

  • Ingelman-Sundberg, M. and Hagbjork, A.L. (1982). On the significance of the cytochrome P-450-dependent hydroxyl radical-mediated oxygenation mechanism. enobiotica 12, 673–686.

    CAS  Google Scholar 

  • Jerina, D. and Daly, J.W. (1974). Arene oxides: A new aspect of drug metabolism, Science, 185, 573–82.

    Article  PubMed  CAS  Google Scholar 

  • Johansson, I. and Ingelman-Sundberg, M. (1983). Hydroxyl radical-mediated, cytochrome P-450-dependent metabolic activation of benzene in microsomes and reconstituted enzyme systems from rabbit liver. J. Biol. Chem. 258, 7311–7316.

    PubMed  CAS  Google Scholar 

  • Lunte, S.M. and Kissenger, P.T. (1983). Detection and identification of sulfhydryl conjugates of p-benzoquinone in microsomal incubations of benzene and phenol. Chem.-Biol. Interactions 47, 195–212.

    Article  CAS  Google Scholar 

  • Omura, T. and Sato, R. (1964). The carbon monoxide-binding pigment of liver microsomes. I. Evidence for its hemoprotein nature. J. Biol. Chem. 239, 2370–2378.

    PubMed  CAS  Google Scholar 

  • Parke, D.V. and Williams, R.T. (1953). Studies in detoxication. The metabolism of benzene containing 14C benzene. Riochem. J. 54, 231–238.

    CAS  Google Scholar 

  • Post, G. and Snyder, R. (1983). Effects of enzyme induction on microsomai benzene metabolism. J. Toxicol. Environ. Health 11, 811–825.

    Article  PubMed  CAS  Google Scholar 

  • Hemmer, H., Schenkman, J.B., Estabrook, R.W., Sasame, H., Gillette, J.R., Narasimhulu, S., Cooper, D.Y. and Rosenthal, O. (1966). Drug interaction with hepatic microsomal cytochrome. Mol. Pharmacol. 2, 187–190.

    Google Scholar 

  • Rosenthal, O. and Cooper, D.Y. (1967) Methods of determining the photochemical action spectrum. In Methods of Enzymology, Vol. X, R.W. Estabrook and M.E. Pullman, eds., Colowick and Kaplan, series eds., pp. 616–628, Academic press, New York.

    Google Scholar 

  • Rushmore, T., Snyder, R., and Kalf, G.F. (1984). Covalent binding of benzene and its metabolites to DNA in rabbit bone marrow mitochondria In vitro. çhem.-Biol. Interactions 49, 133–154.

    CAS  Google Scholar 

  • Saito, F., Kocsis, J.J., and Snyder, R. (1973). Effect of benzene on hepatic metabolism and uitrastructure. Toxicol. Appl. Pharmacol. 26, 209–217.

    Article  PubMed  CAS  Google Scholar 

  • Sawahata, T. and Neal, R.A. (1983). Biotransformation of phenol to hydroquinone and catechol by rat liver microsomes. Mol. Pharmaco1. 23, 453–460.

    CAS  Google Scholar 

  • Schenkman, J.B. (1970). Studies on the nature of the Type I and Type II spectral changes in liver microsomes. Biochemistry 9, 2081–2091.

    Article  PubMed  CAS  Google Scholar 

  • Schenkman, J.B., Hemmer, H., and Estabrook, R.W. (1967). Spectral studies of drug interaction with hepatic microsomal cytochrome. Mol. Pharmacol. 3, 113–123.

    CAS  Google Scholar 

  • Smart, R.C. and Zannoni, V.G. (1985). Effect of ascorbate on covalent binding of benzene and phenol metabolites to isolated tissue preparation Toxicol. Appl. Pharmacol. 77, 334–343.

    Article  PubMed  CAS  Google Scholar 

  • Snyder, R., Longacre, S.L., Witmer, C.M., Kocsis, J.J., Andrews, L.S., and Lee, E.W. (1981). Biochemical toxicology of benzene. In: Reviews in Biochemical Toxicolog.X, Elsevier/North Holland Publishing Co., New York, New York, 3: 123–53.

    Google Scholar 

  • Snyder, R. (1984). The benzene problem in historical perspective. Fund. Appl. Toxicol. 4, 692–699.

    Article  CAS  Google Scholar 

  • Tunek, A., Platt, K.L., Przyblyski, M. and Oesch, F. (1980). Multi-step metabolic activation of benzene. Effect of superoxide dismutase on covalent binding to microsomal macromolecules, and indentification of glutathione conjugates using high pressure liquid chromatography and field desorption mass spectrometry. Chem.-Blol. Interactions 331, 1–7.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Plenum Press, New York

About this chapter

Cite this chapter

Gilmour, S.K., Kalf, G.F., Snyder, R. (1986). Comparison of the Metabolism of Benzene and Its Metabolite Phenol in Rat Liver Microsomes. In: Kocsis, J.J., Jollow, D.J., Witmer, C.M., Nelson, J.O., Snyder, R. (eds) Biological Reactive Intermediates III. Advances in Experimental Medicine and Biology, vol 197. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5134-4_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5134-4_19

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5136-8

  • Online ISBN: 978-1-4684-5134-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics