Skip to main content

Oxytocin and Vasopressin Secretion: New Perspectives

  • Chapter
Neuroendocrine Molecular Biology

Part of the book series: Biochemical Endocrinology ((BIOEND))

Abstract

Six naturally occurring oxytocin-like and three vasopressin-like posterior pituitary hormones have been chemically characterized; all have nine amino-acid residues and six of these are consistent throughout. The posterior pituitary hormones of about 50 species have been fully characterized. This is a small sample, representing about 0.1% of all vertebrate species, but it has allowed a number of principles to be established (Acher, 1980). Most species have two posterior pituitary hormones of the oxytocin-vasopressin family; only the cyclostomes (lampreys) have one. This suggests that a gene duplication must have occurred before the evolution of fishes, some 450–500 million years ago. Point mutations then occurred separately within these two genes to give rise to two families of posterior pituitary hormones. The functions of these two hormones also underwent progressive change. The oxytocin-like peptides became linked primarily to reproduction and the vasopressin-like peptides to water and mineral metabolism. However, it remains impossible to determine the posterior pituitary peptides of extinct ancestral forms. A modern day North American opossum (Didelphis virginiana), often referred to as a living fossil, has been exposed to just as many years of evolution as any other mammalian species. One possible sequence for the derivation of the posterior pituitary hormones is presented in Figure 1. This is based on vasotocin, a hormone found in birds, reptiles, amphibia, fishes and cyclostomes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abe H., Inoue, M., Matsuo, T., and Ogata, N., 1983, The effects of vasopressin on electrical activity in the guinea-pig supraoptic nucleus in vitro, J. Physiol. (Lond.), 337:665.

    CAS  Google Scholar 

  • Acher, R., 1980, Molecular evolution of biologically active polypeptides, Proc. R. Soc. Lond. B., 210:21.

    Article  PubMed  CAS  Google Scholar 

  • Aguilera, G., Wynn, P.C., Haugher, R.L., Holmes, M.C., Millan, M.A., Mendelsohn, F.A.O., Crewe, C., and Catt, K.J., 1984, Receptors and actions of angiotensin II (AII) and corticotropin-releasing factor (CRF) in specific regions of the central nervous system, Excerpta Medica (Int. Congress Series 655):609, Elsevier, Amsterdam.

    Google Scholar 

  • Akaishi, T., and Ellendorff, F., 1983, Electrical properties of para-ventricular neurosecretory neurones with and without recurrent inhibition, Brain Res., 262:151.

    Article  PubMed  CAS  Google Scholar 

  • Andrew, R.D., and Dudek, F.E., 1984a, Analysis of intracellularly recorded phasic bursting by mammalian neuroendocrine cells, J. Neurophysiol., 51:552.

    PubMed  CAS  Google Scholar 

  • Andrew, R.D., and Dudek, F.E., 1984b, Intrinsic inhibition in magnocellular neuroendocrine cells of rat hypothalamus, J. Physiol. (Lond.), 353:171.

    CAS  Google Scholar 

  • Anhut, M., Meyer, D.K., and Knepel, W., 1983, Cholecystokinin-like immunoreactivity of rat medial basal hypothalamus: investigations on a possible hypophysiotropic function, Neuroendocrinology, 36:119.

    Article  PubMed  CAS  Google Scholar 

  • Antoni, F.A., 1984, Novel ligand specificity of pituitary vasopressin receptors in the rat, Neuroendocrinology, 39:186.

    Article  PubMed  CAS  Google Scholar 

  • Antoni, F.A., Holmes, M.C., and Jones, M.T., 1983, Oxytocin as well as vasopressin potentiate ovine CRF in vitro, Peptides, 4:411.

    Article  PubMed  CAS  Google Scholar 

  • Baertschi, A.J., and Friedli, M., 1984, Novel anterior pituitary receptor(s) for neurohypophysial hormones, J. Steroid Biochem., 20(6B):1504.

    Article  Google Scholar 

  • Baertschi, A.J., Bény, J-L., Gähwiler, B.H., and Kolodziejczyk, E., 1983, Vasopressin, corticoliberins and the central control of ACTH secretion, Prog. Brain Res., 60:505.

    Article  PubMed  CAS  Google Scholar 

  • Beinfeld, M.C., Meyer, D.K., and Brownstein, M.J., 1980, Cholecystokinin octapeptide in the rat hypothalamo — neurohypophysial system, Nature, 288:376.

    Article  PubMed  CAS  Google Scholar 

  • Belin, V., Moos, F., and Richard, Ph., 1985, Synchronization of oxytocin cells in the hypothalamic and supraoptic nuclei in suckled rats: direct proof with paired extracellular recordings, Ex. Brain Res., 57:201.

    Google Scholar 

  • Bicknell, R.J., and Leng, G., 1981, Relative efficiency of neural firing patterns for vasopressin release in vitro, Neuroendocrinology, 33:295.

    Article  PubMed  CAS  Google Scholar 

  • Bicknell, R.J., and Leng, G., 1982a, Enkephalin analogue inhibits oxytocin secretion from the rat neurohypophysis, J. Physiol. (Lond.), 332:87P.

    Google Scholar 

  • Bicknell, R.J., and Leng, G., 1982b, Endogenous opiates regulate oxytocin but not vasopressin secretion from the neurohypophysis, Nature, 298:161.

    Article  PubMed  CAS  Google Scholar 

  • Bicknell, R.J., Brown, D., Chapman, C., Hancock, P.D., and Leng, G., 1984a, Reversible fatigue of stimulus secretion coupling in the rat neurohypophysis, J. Physiol. (Lond.), 348:601.

    CAS  Google Scholar 

  • Bicknell, R.J., Leng, G., Lincoln, D.W., and Russell, J.A., 1984b, Activation of oxytocin neurones following naloxone administration to rats treated chronically with intracerebroventricular (i.c.v.) morphine., J. Physiol. (Lond.), 357:97P.

    Google Scholar 

  • Bicknell, R.J., Chapman, C., Leng, G., and Russell, J.A., 1985a, Vasopressin release following naloxone administration to rats treated chronically with intracerebroventricular (i.c.v.) morphine, J. Physiol. (Lond.), 364:61P.

    Google Scholar 

  • Bicknell, R.J., Chapman, C., Leng, G., and Russell, J.A., 1985b, Chronic morphine exposure and oxytocin neurones in rats: lack of both morphine dependence and cross-tolerance to endogenous opioids in the neurohypophysis, J. Physiol. (Lond.), 361:32P.

    Google Scholar 

  • Bicknell, R.J., Chapman, C., and Leng, G., 1985c, Effects of opioid agonists and antagonists on oxytocin and vasopressin release in vitro, Neuroendocrinology, 41:142.

    Article  PubMed  CAS  Google Scholar 

  • Blount, C.A., and Leng, G., 1985, Synaptic excitation and inhibition in the lateral hypothalamus following stimulation of the neural stalk in the rat, J. Physiol. (Lond.), 361:30P.

    Google Scholar 

  • Bourque, C.W., and Renaud, L.P., 1985a, Calcium-dependent action potentials in rat supraoptic neurosecretory neurones recorded in vitro, J. Physiol. (Lond.), 363:419.

    CAS  Google Scholar 

  • Bourque, C.W., and Renaud, L.P., 1985b, Activity dependence of action potential duration in rat supraoptic neurosecretory neurones recorded in vitro, J. Physiol. (Lond.), 363:429.

    CAS  Google Scholar 

  • Bruhn, T.O., Plotsky, P.M., and Vale, W.W., 1984a, Effect of paraventricular lesions on corticotropin-releasing factor (CRF)-like immuno-reactivity in the stalk-median eminence: studies on the adrenocorticotropin response to ether stress and exogenous CRF, Endocrinology, 114:57.

    Article  PubMed  CAS  Google Scholar 

  • Bruhn, T.O., Sutton, S.W., and Vale, W.W., 1984b, Corticotropin-releasing factor (CRF) stimulates oxytocin secretion into systemic circulation, Excerpta Medica (Int. Congress Series 652):464, Elsevier, Amsterdam.

    Google Scholar 

  • Buckingham, J.C., 1985, Two distinct corticotrophin releasing activities of vasopressin, Br. J. Pharmacol., 84:213.

    PubMed  CAS  Google Scholar 

  • Burlet, A., Tonon, M-C., Tankosic, P., Coy, D., and Vaudry, H., 1983, Comparative immunocytochemical localization of corticotropin releasing factor (CRF-41) and neurohypophysial peptides in the brain of Brattleboro and Long-Evans rats, Neuroendocrinology, 37:64.

    Article  PubMed  CAS  Google Scholar 

  • Chapman, C., Hatton, G.I., Ho, Y.W., Mason, W.T., and Robinson, I.C.A.F., 1983, Release of oxytocin (OXT) and vasopressin (AVP) from slices of guinea-pig hypothalamus containing supraoptic or paraventricular nucleus, J. Physiol. (Lond.), 343:40P.

    Google Scholar 

  • Chauvet, M.-T., Colne, T., Hurpet, D., Chauvet, J., and Acher, R., 1983, A multigene family for the vasopressin-like hormones? Identification of mesotocin, lysipressin and phenypressin in Australian macropods. Biochem. Biophys. Res. Comm., 116:258.

    Article  PubMed  CAS  Google Scholar 

  • Chauvet, J., Hurpet, D., Michel, G., Chauvet, M.-T., and Acher, R., 1984, Two multigene families for marsupial neurohypophysial hormones? Identification of oxytocin, mesotocin, lysipressin and arginine vasopressin in the North American opossum (Didelphis virginiana), Biochem. Biophys. Res. Comm., 123:306.

    Article  PubMed  CAS  Google Scholar 

  • Chauvet, J., Hurpet, D., Michel, G., Chauvet, M.-T., Carrick, F.M., and Acher, R., 1985, The neurohypophysial hormones of the egg-laying mammals: identification of arginine vasopressin in the platypus (Ornithorhynchus anatinus), Biochem. Biophys, Res. Comm., 127:277.

    Article  CAS  Google Scholar 

  • Clarke, G., and Patrick, G., 1983, Differential inhibitory action by morphine on the release of oxytocin and vasopressin from the isolated neural lobe, Neurosci. Lett., 39:175.

    Article  PubMed  CAS  Google Scholar 

  • Clarke, G., and Wright, D.M., 1984, A comparison of analgesia and suppression of oxytocin release by opiates, Br. J. Pharmacol., 83:799.

    PubMed  CAS  Google Scholar 

  • Clarke, G., Wood, P., Merrick, L., and Lincoln, D.W., 1979, Opiate inhibition of peptide release from the neurohumoral terminals of hypothalamic neurones, Nature, 282:746.

    Article  PubMed  CAS  Google Scholar 

  • Cobbett, P., Smithson, K.G., and Hatton, G.I., 1984, Phasic neurons of rat hypothalamic paraventricular nucleus are immunoreactive to vasopressin but not oxytocin-associated neurophysin antiserum, Soc. Neurosci. Abstr., 10:609.

    Google Scholar 

  • Coghlan, J.P., Aldred, P., Butkus, A., Crawford, R.J., Darby, I.A., Fernley, R.T., Haralambidis, J., Hudson, P.J., Mitri, R., Niall, H.D., Penschow, J.D., Roche, P.J., Scanion, D.B., and Tregear, G.W., 1984, Hybridization histochemistry, Excerpta Medica (Int. Congress Series 655):18, Elsevier, Amsterdam.

    Google Scholar 

  • Cone, R.I., Weber, E., Barchas, J.D., and Goldstein, A., 1983, Regional distribution of dynorphin and neo-endorphin peptides in rat brain, spinal cord, and pituitary, J. Neurosci., 3:2146.

    PubMed  CAS  Google Scholar 

  • Cutting, R., Fitzsimons, N., Gosden, R.G., Humphreys, E.M., and Russell, J.A., 1985, Evidence that morphine interrupts parturition in rats by inhibiting oxytocin secretion, J. Physiol. (Lond.), Proceedings, September, 1985:In press.

    Google Scholar 

  • Deschenes, R.J., Lorenz, L.J., Haun, R.S., Roos, B.A., Collier, K.J., and Dixon, J.E., 1984, Cloning and sequence analysis of a cDNA encoding rat preprocholecystokinin, Proc. Natl. Acad. Sci. USA., 81:726.

    Article  PubMed  CAS  Google Scholar 

  • Deschenes, R.J., Haun, R.S., Funckes, C.L. and Dixon, J.E., 1985, A gene encoding rat cholecystokinin. Isolation, nucleotide sequence, and promoter activity, J. Biol. Chem., 260:1280.

    PubMed  CAS  Google Scholar 

  • Deschepper, C., Lotstra, F., Vandesande, F., and Vanderhaeghen, J-J., 1983, Cholecystokinin varies in the posterior pituitary and external median eminence of the rat according to factors affecting vasopressin and oxytocin, Life Sci., 32:2571.

    Article  PubMed  CAS  Google Scholar 

  • Dierickx, K., 1980, Immunocytochemical localization of the vertebrate cyclic nonapeptide neurohypophyseal hormones and neurophysins, Int. Rev. Cytol., 62:119.

    Article  PubMed  CAS  Google Scholar 

  • Dreifuss, J.J., Tribollet, E., Baertschi, A.J., and Lincoln, D.W., 1976, Mammalian endocrine neurones: control of phasic activity by antidromic action potentials, Neurosci. Lett., 3:281.

    Article  PubMed  CAS  Google Scholar 

  • Dreyfuss, F., Burlet, A., Tonon, M.C., and Vaudry, H., 1984, Comparative immunoelectron microscopic localization of corticotropin-releasing factor (CRF-41) and oxytocin in the rat median eminence, Neuroendocrinology, 39:284.

    Article  PubMed  CAS  Google Scholar 

  • Dutton, A., and Dyball, R.E.J., 1979, Phasic firing enhances vasopressin release from the rat neurohypophysis, J. Physiol., 290:433.

    PubMed  CAS  Google Scholar 

  • Faris, P.L., Komisaruk, B.R., Watkins, L.R., and Mayer, D.J., 1983, Evidence for the neuropeptide cholecystokinin as an antagonist of opiate analgesia, Science, 219:310.

    Article  PubMed  CAS  Google Scholar 

  • Freund-Mercier, M.J., and Richard, Ph., 1984, Electrophysiological evidence for the facilitatory control of oxytocin neurones by oxytocin during suckling in the rat, J. Physiol., 352:447.

    PubMed  CAS  Google Scholar 

  • Furutani, Y., Morimoto, Y., Shibahara, S., Noda, M., Takahashi, H., Hirose, T., Asai, M., Inayama, S., Hayashida, H., Miyata, T., and Numa, S., 1983, Cloning and sequence analysis of cDNA for ovine corticotropin-releasing factor precursor, Nature, 301:537.

    Article  PubMed  CAS  Google Scholar 

  • Gerstberger, R., and Barden, N., 1984, Dynorphin (1–8) binds to opiate-kappa-receptors in the neurohypophysis and is involved in the regulation of vasopressin release, Excerpta Medica (Int. Congress Series 652):631, Elsevier, Amsterdam.

    Google Scholar 

  • Gibbs, D.M., 1984a, High concentrations of oxytocin in hypophysial portal plasma, Endocrinology, 114:1216.

    Article  PubMed  CAS  Google Scholar 

  • Gibbs, D.M., 1984b, Dissociation of oxytocin, vasopressin and corticotropin secretion during different types of stress, Life Sci., 35:487.

    Article  PubMed  CAS  Google Scholar 

  • Gibbs, D.M., 1985, Measurement of hypothalamic corticotrophin-releasing — factors in hypophyseal portal blood, Fed. Proc., 44:203.

    PubMed  CAS  Google Scholar 

  • Gibbs, D.M., Vale, W., Rivier, J., and Yen, S.S.C., 1984, Oxytocin potentiates the ACTH-releasing activity of CRF(41) but not vasopressin, Life Sci., 34:2245.

    Article  PubMed  CAS  Google Scholar 

  • Gillies, G., Puri, A., Hodgkinson, S., and Lowry, P.J., 1984, Involvement of rat corticotrophin-releasing factor-41-related peptide and vasopressin adrenocorticotrophin-releasing activity from superfused rat hypothalami in vitro, J. Endocrinol., 103:25.

    Article  PubMed  CAS  Google Scholar 

  • Giraud, P., Castanas, E., Patey, G., Oliver, C., Rossier, J., 1983, Regional distribution of methionine-enkephalin-Arg6-Phe7 in the rat brain: comparative study with the distribution of other opioid peptides, J. Neurochem., 41:154.

    Article  PubMed  CAS  Google Scholar 

  • Grell, S., Christensen, J.D., and Fjalland, B., 1985, Morphine anti-diuresis in conscious rats: contribution of vasopressin and blood pressure, Acta Pharmacol. Toxicol. (Copenh.), 56:38.

    Article  CAS  Google Scholar 

  • Haldar, J., Hoffman, D.L., and Zimmerman, E.A., 1982, Morphine, beta-endorphin and D-Ala2 met-enkephalin inhibit oxytocin release by acetylcholine and suckling, Peptides, 3:663.

    Article  PubMed  CAS  Google Scholar 

  • Harris, G.W., Manabe, Y., and Ruf, K.B., 1969, A study of the parameters of electrical stimulation of unmyelinated fibres in the pituitary stalk, J. Physiol. (Lond.), 203:67.

    CAS  Google Scholar 

  • Hartman, R., Miller, D., Rosella-Dampman, L., Emmert, S., and Summy-Long, J., 1984, Role for endogenous opioid peptides in regulating oxytocin release at parturition, J. Steroid Biochem., 20(6B):1503.

    Google Scholar 

  • Hatton, G.I., 1984, Hypothalamic neurobiology, in: “Brain Slices”, R. Dingledine, ed., Plenum, New York.

    Google Scholar 

  • Hatton, G.I., Ho, Y.W., and Mason, W.T., 1983, Synaptic activation of phasic bursting in rat supraoptic nucleus neurones recorded in hypothalamic slices, J. Physiol. (Lond.), 345:297.

    CAS  Google Scholar 

  • Ishikawa, S., and Schrier, R.W., 1982, Evidence for a role of opioid peptides in the release of arginine vasopressin in the conscious rat, J. Clin. Invest., 69:666.

    Article  PubMed  CAS  Google Scholar 

  • Itoh, S., Katsuura, G., Yoshikawa, K., and Rehfeld, J.F., 1985, Potentiation of β-endorphin effects by cholecystokinin antiserum in rats, Can. J. Physiol. Pharmacol., 63:81.

    Article  PubMed  CAS  Google Scholar 

  • Ivell, R., and Richter, D., 1984, Structure and comparison of the oxytocin and vasopressin genes from rat, Proc. Natl. Acad. Sci. USA, 81:2006.

    Article  PubMed  CAS  Google Scholar 

  • Iversen, L.L., Iversen, S.D., and Bloom, F.E., 1980, Opiate receptors influence vasopressin release from nerve terminals in rat neurohypophysis, Nature, 284:350.

    Article  PubMed  CAS  Google Scholar 

  • Juss, T.S., and Wakerley, J.B., 1981, Mesencephalic areas controlling pulsatile oxytocin release in the suckled rat, J. Endocrinol., 91:233.

    Article  PubMed  CAS  Google Scholar 

  • Keil, L.C., Rosella-Dampman, L.M., Emmert, S., Chee, O., and Summy-Long, J.Y., 1984, Enkephalin inhibition of angiotensin-stimulated release of oxytocin and vasopressin, Brain Res., 297:329.

    Article  PubMed  CAS  Google Scholar 

  • Kiss, J.Z., Mezey, E., and Skirboll, L., 1984a, Corticotropin-releasing factor-immunoreactive neurones of the paraventricular nucleus become vasopressin positive after adrenalectomy, Proc. Natl. Acad. Sci. USA, 81:1854.

    Article  PubMed  CAS  Google Scholar 

  • Kiss, J.Z., Williams, T.H., and Palkovits, M., 1984b, Distribution and projections of cholecystokinin-immunoreactive neurons in the hypothalamic paraventricular nucleus of rat, J. Comp. Neurol., 227:173.

    Article  PubMed  CAS  Google Scholar 

  • Knepel, W., Nutto, D., and Meyer, D.K., 1983, Naloxone increases vasopressin secretion from the neurointermediate lobe of the hypophysis of the rat: search for the endogenous agonist, Life Sci., 33, Suppl. 1:499.

    Article  PubMed  CAS  Google Scholar 

  • Knepel, W., Homolka, L., Vlaskovska, M., and Nutto, D., 1984a, Stimulation of adrenocorticotropin/beta-endorphin release by synthetic ovine corticotropin-releasing factor in vitro. Enhancement by various vasopressin analogs, Neuroendocrinology, 38:344.

    Article  PubMed  CAS  Google Scholar 

  • Knepel, W., Homolka, L., Vlaskovska, M., and Nutto, D., 1984b, In vitro adrenocorticotropin/β-endorphin-releasing activity of vasopressin analogs is related neither to pressor nor to antidiuretic activity, Endocrinology, 114:1797.

    Article  PubMed  CAS  Google Scholar 

  • Lang, R.E., Rascher, W., Heil, J., Unger, Th., Wiedemann, G., and Ganten, D., 1981, Angiotensin stimulates oxytocin release, Life Sci., 29:1425.

    Article  PubMed  CAS  Google Scholar 

  • Lang, R.E., Heil, J.W.E., Ganten, D., Hermann, K., Unger, T., and Rascher, W., 1983, Oxytocin unlike vasopressin is a stress hormone in the rat, Neuroendocrinology, 37:314.

    Article  PubMed  CAS  Google Scholar 

  • Leng, G., 1981, The effects of neural stalk stimulation upon firing patterns in rat supraoptic neurones, Exp. Brain Res., 41:135.

    Article  PubMed  CAS  Google Scholar 

  • Leng, G., 1982, Lateral hypothalamic neurones: osmosensitivity and the influence of activating magnocellular neurosecretory neurones, J. Physiol., 326:35.

    PubMed  CAS  Google Scholar 

  • Leng, G., and Dyball, R.E.J., 1983, Intercommunication in the rat supraoptic nucleus, Q. J. Exp. Physiol., 68:493.

    PubMed  CAS  Google Scholar 

  • Leng, G., and Mason, W.T., 1982, Influence of vasopressin upon firing patterns of supraoptic neurons: a comparison of normal and Brattleboro rats, Ann. N.Y. Acad. Sci., 394:153.

    Article  PubMed  CAS  Google Scholar 

  • Leng, G., Mason, W.T., and Dyer, R.G., 1982, The supraoptic nucleus as an osmoreceptor, Neuroendocrinology, 34:75.

    Article  PubMed  CAS  Google Scholar 

  • Leng, G., Dyball, R.E.J., and Mason, W.T., 1985a, Electrophysiology of osmoreceptors, in: “Vasopressin”, R.W. Schrier, ed., Raven Press, New York.

    Google Scholar 

  • Leng, G., Mansfield, S., Bicknell, R.J., Dean, A.D.P., Ingram, C.D., Marsh, M.I.C., Yates, J.O., and Dyer, R.G., 1985b, Central opioids: a possible role in parturition?. J. Endocrinol., 106:219.

    Article  PubMed  CAS  Google Scholar 

  • Léránth, C.S., Záborsky, L., Marton, J., and Palkovits, M., 1975, Quantitative studies on the supraoptic nucleus in the rat. I. Synaptic organization, Exp. Brain Res., 22:509.

    Article  PubMed  Google Scholar 

  • Lightman, S.L., Iversen, L.L., and Forsling, M.L., 1982, Dopamine and [d-Ala2, d-Leu5] enkephalin inhibit the electrically stimulated neurohypophyseal release of vasopressin in vitro: evidence for calcium-dependent opiate action, J. Neurosci., 2:78.

    PubMed  CAS  Google Scholar 

  • Lightman, S.L., Ninkovic, M., Hunt, S.P., and Iversen, L.L., 1983, Evidence for opiate receptors on pituicytes, Nature (Lond.), 305:235.

    Article  CAS  Google Scholar 

  • Lincoln, D.W., 1974, Dynamics of oxytocin secretion, in: “Neurosecretion — the final neuroendocrine pathway”, F. Knowles and L. Vollrath, eds., Springer-Verlag, Heidelberg.

    Google Scholar 

  • Lincoln, D.W., and Wakerley, J.B., 1974, Electrophysiological evidence for the activation of supraoptic neurones during the release of oxytocin, J. Physiol. (Lond.), 242:533.

    CAS  Google Scholar 

  • Lincoln, D.W., and Russell, J.A., 1985, The electrophysiology of magnocellular oxytocin neurons, in: “Oxytocin: Clinical and Laboratory Studies”, J.A. Amico and A.G. Robinson, eds., Elsevier, New York.

    Google Scholar 

  • Linton, E.A., Tilders, F.J.H., Hodgkinson, S., Berkenbosch, F., Vermes, I., and Lowry, P.J., 1985, Stress-induced secretion of adrenocorticotropin in rats is inhibited by administration of antisera to ovine corticotropin-releasing factor and vasopressin, Endocrinology, 116:966.

    Article  PubMed  CAS  Google Scholar 

  • Marley, P.D., Lightman, S.L., Forsling, M.L., Todd, K., Goedert, M., Rehfeld, J.F., and Emson, P.C., 1984, Localization and actions of cholecystokinin in the rat pituitary neurointermediate lobe, Endocrinology, 114:1902.

    Article  PubMed  CAS  Google Scholar 

  • Martin, R., Geis, R., Holl, R., Schäfer, M., and Voigt, K.H., 1983a, Co-existence of unrelated peptides in oxytocin and vasopressin terminals of rat neurohypophyses: immunoreactive methionine5-enkephalin, Ieucine5-enkephalin and cholecystokinin-like substances, Neuroscience, 8:213.

    Article  PubMed  CAS  Google Scholar 

  • Martin, R., Moll, U., and Voigt, K.H., 1983b, An attempt to characterize by immunocytochemical methods the enkephalin-like material in oxytocin endings of the rat neurohypophysis, Life Sci., 33, Suppl. 1:69.

    Article  PubMed  CAS  Google Scholar 

  • Mason, W.T., 1980, Supraoptic neurones of rat hypothalamus are osmosensitive, Nature, 287:154.

    Article  PubMed  CAS  Google Scholar 

  • Mason, W.T., and Leng, G., 1984, Complex action potential waveform recorded from supraoptic and paraventricular neurones of the rat: evidence for sodium and calcium spike components at different membrane sites, Exp. Brain Res., 56:135.

    Article  PubMed  CAS  Google Scholar 

  • Mason, W.T., Ho, Y.W., Eckenstein, F., and Hatton, G.I., 1983, Mapping of cholinergic neurones associated with rat supraoptic nucleus: combined immunocytochemical and histochemical identification, Brain Res. Bull., 11:617.

    Article  PubMed  CAS  Google Scholar 

  • Mason, W.T., Ho, Y.W., and Hatton, G.I., 1984, Axon collaterals of supraoptic neurones: anatomical and electrophysiological evidence for their existence in the lateral hypothalamus, Neuroscience, 11:169.

    Article  PubMed  CAS  Google Scholar 

  • Matsumura, M., Yamanoi, A., Yamamoto, S., Mori, H., and Saito, S., 1984, In vivo and in vitro effects of cholecystokinin octapeptide on the release of growth hormone in rats, Horm. Metab. Res., 16:626.

    Article  PubMed  CAS  Google Scholar 

  • Matsuo, H., 1984, Neo-endorphins and dynorphins processed out of proenkephalin B, Excerpta Medica (Int. Congress Series 655):637, Elsevier, Amsterdam.

    Google Scholar 

  • Maysinger, D., Vermes, I., Tilders, F., Seizinger, B.R., Gramsch, C., Höllt, V., and Herz, A., 1984, Differential effects of various opioid peptides on vasopressin and oxytocin release from the rat pituitary in vitro, Naunyn Schmiedebergs Arch. Pharmacol., 328:191.

    Article  PubMed  CAS  Google Scholar 

  • Millan, M.J., and Herz, A., 1985, The endocrinology of the opioids, Int. Rev. Neurobiol., 26:1.

    Article  PubMed  CAS  Google Scholar 

  • Millan, M.J., Millan, M.H., and Herz, A., 1983, Contribution of the supraoptic nucleus to brain and pituitary pools of immunoreactive vasopressin and particular opioid peptides, and the interrelationships between these, in the rat, Neuroendocrinology, 36:310.

    Article  PubMed  CAS  Google Scholar 

  • Millan, M.H., Millan, M.J., and Herz, A., 1984, The hypothalamic paraventricular nucleus: relationship to brain and pituitary pools of vasopressin and oxytocin as compared to dynorphin, β-endorphin and related opioid peptides in the rat, Neuroendocrinology, 38:108.

    Article  PubMed  CAS  Google Scholar 

  • Miselis, R.R., 1981, The efferent projections of the subfornical organ of the rat: a circumventricular organ within a neural network subserving water balance, Brain Res., 230:1.

    Article  PubMed  CAS  Google Scholar 

  • Moos, F., and Richard, P., 1983, Serotonergic control of oxytocin release during suckling in the rat: opposite effects in conscious and anesthetized rats, Neuroendocrinology, 36:300.

    Article  PubMed  CAS  Google Scholar 

  • Moos, F., Freund-Mercier, M.J., Guerné, Y., Guerné, J.M., Stoeckel, M.E., and Richard, Ph., 1984, Release of oxytocin and vasopressin by magnocellular nuclei in vitro: specific facilitatory effect of oxytocin on its own release, J. Endocrinol., 102:63.

    Article  PubMed  CAS  Google Scholar 

  • Morris, B., and Livingston, A., 1983, Hormone-releasing stimuli do not alter met-enkephalin levels in the rat neurohypophysis, Life Sci., 33, Suppl. I:511.

    Article  PubMed  CAS  Google Scholar 

  • Palkovits, M., Brownstein, M.J., and Zamir, N., 1983, Immunoreactive dynorphin and α-neo-endorphin in rat hypothalamo-neurohypophyseal system, Brain Res., 278:258.

    Article  PubMed  CAS  Google Scholar 

  • Palkovits, M., Kiss, J.Z., Beinfeld, M.C., and Brownstein, M.J., 1984, Cholecystokinin in the hypothalamo-hypophyseal system, Brain Res., 299:186.

    Article  PubMed  CAS  Google Scholar 

  • Pittman, Q.J., Lawrence, D., and Lederis, K., 1983, Presynaptic interactions in the neurohypophysis: endogenous modulators of release, Prog. Brain Res., 60:319.

    Article  PubMed  CAS  Google Scholar 

  • Pitzel, L., and König, A., 1984, Lack of response in the release of oxytocin and vasopressin from isolated neurohypophyses to dopamine, met-enkephalin and leu-enkephalin, Exp. Brain Res., 56:221.

    Article  PubMed  CAS  Google Scholar 

  • Plotsky, P.M., Bruhn, T.O. and Vale, W., 1984, Central modulation of immunoreactive corticotropin-releasing factor secretion by arginine vasopressin, Endocrinology, 115:1639.

    Article  PubMed  CAS  Google Scholar 

  • Plotsky, P.M., Bruhn, T.O., and Otto, S., 1985, Central modulation of immunoreactive arginine vasopressin and oxytocin secretion into the hypophysial-portal circulation by corticotropin-releasing factor, Endocrinology, 116, 1669.

    Article  PubMed  CAS  Google Scholar 

  • Poulain, D.A., and Wakerley, J.B., 1982, Electrophysiology of hypothalamic magnocellular neurones secreting oxytocin and vasopressin, Neuroscience, 7:773.

    Article  PubMed  CAS  Google Scholar 

  • Poulain, D.A., Wakerley, J.B., Dyball, R.E.J., 1977, Electrophysiological differentiation of oxytocin-and vasopressin-secreting neurones. Proc. R. Soc. Lond. B, 196:367.

    Article  PubMed  CAS  Google Scholar 

  • Racké, K., Ritzel, H., Trapp, B., and Muscholl, E., 1982, Dopaminergic modulation of vasopressin release from isolated neurohypophysis of the rat. Possible involvement of endogenous opioids, Naunyn-Schmiedebergs Arch. Pharmacol., 319:56.

    Article  PubMed  Google Scholar 

  • Rehfeld, J.F., 1985, Neuronal cholecystokinin: one or multiple transmitters, J. Neurochem., 44:1.

    Article  PubMed  CAS  Google Scholar 

  • Rivier, C., and Vale, W., 1983, Modulation of stress-induced ACTH release by corticotropin-releasing factor, catecholamines and vasopressin, Nature, 305:325.

    Article  PubMed  CAS  Google Scholar 

  • Rivier, C., Rivier, J., Mormede, P., and Vale, W., 1984, Studies of the nature of the interaction between vasopressin and corticotropin-releasing factor or adrenocorticotropin release in the rat, Endocrinology, 115:882.

    Article  PubMed  CAS  Google Scholar 

  • Rossier, J., Battenberg, E., Pittman, Q., Bayon, A., Koda, L., Miller, R., Guillemin, R., and Bloom, F., 1979, Hypothalamic enkephalin neurones may regulate the neurohypophysis, Nature, 277:653.

    Article  PubMed  CAS  Google Scholar 

  • Ruppert, S., Scherer, G., and Schütz, G., 1984, Recent gene conversion involving bovine vasopressin and oxytocin precursor genes suggested by nucleotide sequence, Nature, 308:554.

    Article  PubMed  CAS  Google Scholar 

  • Russell, J.A., 1983, Combined morphometric and immunocytochemical evidence that in the paraventricular nucleus of the rat oxytocin but not vasopressin neurones respond to the suckling stimulus, Prog. Brain Res., 60:31.

    Article  PubMed  CAS  Google Scholar 

  • Russell, J.A., 1984, Naloxone provokes protracted secretion of oxytocin in morphine-dependent lactating rats anaesthetized with urethane, J. Physiol.,(Lond.), 355:34P.

    Google Scholar 

  • Russell, J.A., and Spears, N., 1984, Morphine inhibits suckling-induced oxytocin secretion in conscious lactating rats but also disrupts maternal behaviour, J. Physiol. (Lond.), 346:133P.

    Google Scholar 

  • Saavedra, J.M., Rougeot, C., Culman, J., Israel, A., Niwa, M., Tonon, M.C., Dray, F., and Vaudry, H., 1984, Decrease in corticotropin-releasing factor (CRF)-like immunoreactivity in rat intermediate and posterior lobes after stalk section, Excerpta Medica (Int. Congress Series 652):1290, Elsevier, Amsterdam.

    Google Scholar 

  • Saito, A., Sankaran, H., Goldfine, I.D., Williams, J.A., 1980, Cholecystokinin receptors in the brain: characterization and distribution, Science, 208:1155.

    Article  PubMed  CAS  Google Scholar 

  • Samson, W.K., McDonald, J.K., and Lumpkin, M.D., 1985, Naloxone-induced dissociation of oxytocin and prolactin releases, Neuroendocrinology, 40:68.

    Article  PubMed  CAS  Google Scholar 

  • Saphier, D., and Feldman, S., 1985, Electrophysiologic evidence for neural connections between the paraventricular nucleus and neurons of the supraoptic nucleus in the rat, Exp. Neurol., 89:289.

    Article  PubMed  CAS  Google Scholar 

  • Sawchenko, P.E., and Swanson, L.W., 1985, Localization, colocalization, and plasticity of corticotropin-releasing factor immunoreactivity in rat brain, Fed. Proc., 44:221.

    PubMed  CAS  Google Scholar 

  • Sawchenko, P.E., Swanson, L.W., and Vale, W., 1984, Co-expression of corticotropin-releasing factor and vasopressin immunoreactivity in parvocellular neurons of the adrenalectomized rat, Proc. Natl. Acad. Sci. USA, 81:1883.

    Article  PubMed  CAS  Google Scholar 

  • Schmale, M., and Richter, D., 1984, Single base deletion in the vasopressin gene is the cause of diabetes insipidus in Brattleboro rats, Nature, 308:705.

    Article  PubMed  CAS  Google Scholar 

  • Seizinger, B.R., Maysinger, D., Hollt, V., Grimm, C., and Herz, A., 1982, Concomitant neonatal development and in vitro release of dynorphin and α-neo-endorphin, Life Sci., 31:1757.

    Article  PubMed  CAS  Google Scholar 

  • Seizinger, B.R., Hollt, V., and Herz, A., 1984, Proenkephalin B (Prodynorphin)-derived opioid peptides: evidence for a differential processing in lobes of the pituitary, Endocrinology, 115:662.

    Article  PubMed  CAS  Google Scholar 

  • Sgro, S., Ferguson, A.V., and Renaud, L.P., 1984, Subfornical organsupraoptic nucleus connections: an electrophysiologic study in the rat, Brain Res., 303:7.

    Article  PubMed  CAS  Google Scholar 

  • Silverman, A.J., Hoffman, D.L., Zimmerman, E.A., 1981, The descending afferent connections of the paraventricular nucleus of the hypothalamus, Brain Res. Bull., 6:47.

    Article  PubMed  CAS  Google Scholar 

  • Spinedi, E., and Negro-Vilar, A., 1984, Arginine vasopressin and ACTH release: correlation between binding characteristics and bioactivity in anterior pituitary dispersed cells, Excerpta Medica (Int. Congress Series 652):1321, Elsevier, Amsterdam.

    Google Scholar 

  • Summerlee, A.J.S., 1981, Extracellular recordings from oxytocin neurones during the expulsive phase of birth in unanaesthetized rats, J. Physiol. (Lond.), 321:1.

    CAS  Google Scholar 

  • Summerlee, A.J.S., and Lincoln, D.W., 1981, Electrophysiological recordings from oxytocinergic neurones during suckling in the unanaesthetized lactating rat, J. Endocrinol., 90:255.

    Article  PubMed  CAS  Google Scholar 

  • Summy-Long, J.Y., Rosella, L.M., and Keil, L.C., 1981, Effects of centrally administered endogenous opioid peptides on drinking behavior, increased plasma vasopressin and pressor response to hypertonic sodium chloride, Brain Res., 221:343.

    Article  PubMed  CAS  Google Scholar 

  • Summy-Long, J.Y., Keil, L.C., Sells, G., Kirby, A., Chee, O., and Severs, W.B., 1983, Cerebroventricular sites for enkephalin inhibition of the central actions of angiotensin, Am. J. Physiol., 244:R522.

    PubMed  CAS  Google Scholar 

  • Summy-Long, J.Y., Miller, D.S., Rosella-Dampman, L.M., Hartman, R.D., and Emmert, S.E., 1984, A functional role for opioid peptides in the differential secretion of vasopressin and oxytocin, Brain Res., 309:362.

    Article  PubMed  CAS  Google Scholar 

  • Swanson, L.W., and Sawchenko, P.E., 1983, Hypothalamic integration: organization of the paraventricular and supraoptic nuclei, Ann. Rev. Neurosci., 6:269.

    Article  PubMed  CAS  Google Scholar 

  • Swanson, L.W., Sawchenko, P.E., Rivier, J., and Vale, W.W., 1983, Organization of ovine corticotropin-releasing factor immunoreactive cells and fibers in the rat brain: an immunohistochemical study, Neuroendocrinology, 36:165.

    Article  PubMed  CAS  Google Scholar 

  • Szligi, G.R., and Ludens, J.H., 1982, Studies on the nature and mechanism of the diuretic action of the opioid analgesic ethylketocyclazocine, J. Pharmacol. Exp. Ther., 220:585.

    Google Scholar 

  • Theodosis, D.T., 1985, Oxytocin-immunoreactive terminals synapse on oxytocin neurones in the supraoptic nucleus, Nature, 313:682.

    Article  PubMed  CAS  Google Scholar 

  • Theodosis, D.T., and Poulain, D.A., 1983, Evidence for structural plasticity in the supraoptic nucleus of the rat hypothalamus in relation to gestation and lactation, Neuroscience, 11:183.

    Article  Google Scholar 

  • Theodosis, D.T., Chapman, D., Montagnese, C., Morris, J., Poulain, D.A., and Vincent, J.D., 1984, Structural plasticity in the hypothalamic supraoptic nucleus involves mainly oxytocin-secreting neurons, J. Steroid Biochem., 20(6B):1499.

    Article  Google Scholar 

  • Thomson, A.M., 1984, Supraoptic neurons sustain high frequency firing when extracellular Ca2+ is replaced with other divalent cations in rat brain slices, Neuroscience, 12:495.

    Article  PubMed  CAS  Google Scholar 

  • Tramu, G., Croix, C., and Villez, A., 1983, Ability of the CRF immunoreactive neurons of the paraventricular nucleus to produce a vasopressin-like material, Neuroendocrinology, 37:467.

    Article  PubMed  CAS  Google Scholar 

  • Tweedle, C.D., 1983, Ultrastructural manifestations of increased hormone release in the neurohypophysis, Prog. Brain Res., 60:259.

    Article  PubMed  CAS  Google Scholar 

  • Tweedle, C.D., and Hatton, G.I., 1984, Synapse formation and disappearance in adult rat supraoptic nucleus during different hydration states, Brain Res., 309:373.

    Article  PubMed  CAS  Google Scholar 

  • Vale, W., Rivier, C., Brown, M.R., Spiess, J., Koob, G., Swanson, L., Bilezikjian, L., Bloom, F., and Rivier, J., 1983, Chemical and biological characterization of corticotropin releasing factor., Rec. Prog. Horm. Res., 39:245.

    PubMed  CAS  Google Scholar 

  • Vanderhaeghen, J.J., Lotstra, F., Vandesande, F., and Dierickx, K., 1981, Coexistence of cholecystokinin and oxytocin-neurophysin in some magnocellular hypothalamo-hypophyseal neurons, Cell Tissue Res., 221:227.

    Article  PubMed  CAS  Google Scholar 

  • Vanderhaeghen, J.J., Lotstra, F., Liston, D.R., and Rossier, J., 1983, Proenkephalin, [Met] enkephalin, and oxytocin immunoreactivities are colocalized in bovine hypothalamic magnocellular neurones, Proc. Natl. Acad. Sci. USA, 80:5139.

    Article  PubMed  CAS  Google Scholar 

  • Vandesande, F., Dierickx, K., and De Mey, J., 1977, The origin of the vasopressinergic and oxytocinergic fibres of the external region of the median eminence of the rat hypophysis, Cell Tissue Res., 180:443.

    Article  PubMed  CAS  Google Scholar 

  • Van Leeuwen, F.W., Pool, C.W., and Sluiter, A.A., 1983, Enkephalin immuno-reactivity in synaptoid elements on glial cells in the rat neural lobe, Neuroscience, 8:229.

    Article  PubMed  Google Scholar 

  • Wardlaw, S.L., Wehrenberg, W.B., Ferin, M., Antunes, J.L., and Frantz, A.G., 1982, Effect of sex steroids on β-endorphin in hypophyseal portal blood, J. clin. Endocrinol Metab., 55:877.

    Article  PubMed  CAS  Google Scholar 

  • Watkins, L.R., Kinscheck, I.B., and Mayer, D.J., 1985, Prolongation of morphine analgesia by the cholecystokinin antagonist proglumide (BRE 10528), Brain Res., 327:169.

    Article  PubMed  CAS  Google Scholar 

  • Watson, S.J., Akil, H., Fischli, W., Goldstein, A., Zimmerman, E.A., Nilaver, G., and Van Wimersma Greidanus, Tj.B., 1982, Dynorphin and vasopressin: common localization in magnocellular neurons, Science, 216:85.

    Article  PubMed  CAS  Google Scholar 

  • Weber, E., and Barchas, J.D., 1983, Immunohistochemical distribution of dynorphin B in rat brain: relation of dynorphin A and α-neo-endorphin systems, Proc. Natl. Acad. Sci. USA, 80:1125.

    Article  PubMed  CAS  Google Scholar 

  • Weber, E., Roth, K.A., Evans, C.J., Chang, J-K., and Barchas, J.D., 1983a, Immunohistochemical localization of dynorphin (1–8) in hypothalamic magnocellular neurons: evidence for absence of proenkephalin, Life Sci., 31:1761.

    Article  Google Scholar 

  • Weber, E., Geis, R., Voigt, K.H., and Barchas, J.D., 1983b, Levels of pro-neo-endorphin/dynorphin-derived peptides in the hypothalamo-posterior pituitary system of male and female Brattleboro rats, Brain Res., 260:166.

    Article  PubMed  CAS  Google Scholar 

  • Wehrenberg, W.B., Wardlaw, S.L., Frantz, A.G., and Ferin, M., 1982, β-endorphin in hypophyseal portal blood; variations throughout the menstrual cycle, Endocrinology, 111:879.

    Article  PubMed  CAS  Google Scholar 

  • Wennogle, L.P., Steel, D.J., and Petrack, B., 1985, Characterization of central cholecystokinin receptors using a radioiodinated octapeptide probe, Life Sci., 36:1485.

    Article  PubMed  CAS  Google Scholar 

  • Whitnall, M.H., Mezey, E., and Gainer, H., 1985, Co-localization of corticotropin-releasing factor and vasopressin in median eminence neurosecretory vesicles, Nature, 317:248.

    Article  PubMed  CAS  Google Scholar 

  • Williams, T.D.M., Carter, D.A., and Lightman, S.L., 1985, Sexual dimorphism in the posterior pituitary response to stress in the rat, Endocrinology, 116:738.

    Article  PubMed  CAS  Google Scholar 

  • Wolfson, B., Manning, R.W., Davis, L.G., Arentzen, R., and Baldino, F. Jr., 1985, Co-localization of corticotropin releasing factor and vasopressin mRNA in neurones after adrenalectomy, Nature, 315:59.

    Article  PubMed  CAS  Google Scholar 

  • Yamashita, H., Inenaga, K., Kawata, M., and Sano, Y., 1983, Phasically firing neurons in the supraoptic nucleus of the rat hypothalamus: immunocytochemical and electrophysiological studies, Neurosci. Lett., 37:87.

    Article  PubMed  CAS  Google Scholar 

  • Zamir, N., Zamir, D., Eiden, L.E., Palkovits, M., Brownstein, M.J., Eskay, R.L., Weber, E., Faden, A.I., and Feuerstein, G., 1985, Methionine and leucine enkephalin in rat neurohypophysis: different responses to osmotic stimuli and T2 toxin, Science, 228:606.

    Article  PubMed  CAS  Google Scholar 

  • Zimmerman, E.A., and Silverman, A.J., 1983, Vasopressin and adrenal cortical interactions, Prog. Brain Res., 60:493.

    Article  PubMed  CAS  Google Scholar 

  • Zukin, R.S., and Zukin, S.R., 1984, The case for multiple opiate receptors, Trends in Neurosciences, 7(5):160.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Plenum Press, New York

About this chapter

Cite this chapter

Lincoln, D.W., Russell, J.A. (1986). Oxytocin and Vasopressin Secretion: New Perspectives. In: Fink, G., Harmar, A.J., McKerns, K.W. (eds) Neuroendocrine Molecular Biology. Biochemical Endocrinology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5131-3_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5131-3_17

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5133-7

  • Online ISBN: 978-1-4684-5131-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics