Skip to main content

Role of Neuropeptides in Memory

  • Chapter
Clinical Disorders of Memory

Part of the book series: Critical Issues in Psychiatry ((CIPS))

  • 100 Accesses

Abstract

Neurotransmitters, neuromodulators, and hormones are being studied extensively to determine their role in memory processes. The research in this area has become complicated with the increasing number of neuropeptides found in the brain. In addition to the classic neurotransmitters (acetylcholine, dopamine, serotonin, etc.), at least 30 to 40 new neuropeptides have been discovered in the last two decades. It is expected that 200 to 400 neuropeptides ultimately will be identified. Most of the neuropeptides so far studied appear to influence memory processes in some manner. Thus a single system of neuropeptides does not control memory processes. A brief review of the research is presented for each of the systems studied so far.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baratti CM, Huygen P, Mino J, et al: Memory facilitation with post trial injections of oxotremerine and physostigmine in mice. Psychopharmacology 1979; 64: 85–88.

    Article  PubMed  CAS  Google Scholar 

  • Belluzzi J, Stein L: Enkephalin may mediate euphoria and drive-reduction reward. Nature 1977; 266: 556–558.

    Article  PubMed  CAS  Google Scholar 

  • Boyd WE, Graham-White J, Blackwood G, et al: Clinical effects of choline in Alzheimer senile dementia. Lancet 1977; 2: 711.

    Article  PubMed  CAS  Google Scholar 

  • Caltagirone C, Albanese A, Gainotti G: Oral administration of chronic physostigmine does not improve cognitive or amnesic performances in Alzheimer’s presenile dementia. Int J Neurosci 1982; 16: 247–249.

    Article  PubMed  CAS  Google Scholar 

  • Caltagirone C, Albanese A, Gainotti G: Acute administration of individual optimal dose of physostigmine fails to improve amnesic performancces in Alzheimer presenile dementia. Int J Neurosci 1983; 18: 143.

    Article  PubMed  CAS  Google Scholar 

  • Carey, R, Miller M: Absence of learning and memory deficits in the vasopressin-deficit rat. Behav Brain Res 1982; 6: 1–13.

    Article  PubMed  CAS  Google Scholar 

  • Carlton P: Some effects of scopolamine, atropine and amphetamine in three behavioral situations. Pharmacologist 1961; 3: 60.

    Google Scholar 

  • Carrasco M, Dias R, Izquierdo I: Naloxone reverses retrograde amnesia induced by electroconvulsive shock. Behav Neural Biol 1982; 34: 352–357.

    Article  PubMed  CAS  Google Scholar 

  • David D, Yamamura H: Cholinergic under-activity in human memory disorders. Life Sci 1978; 23: 1729–1734.

    Article  Google Scholar 

  • Davis K, Mohs R, Tinldenberg J, et al: Physostigmine: Improvement of long-term memory processes in normal humans. Science 1978; 201: 272–74.

    Article  PubMed  CAS  Google Scholar 

  • Deutsch J: Cholinergic synapse and the site of memory. Science 1971; 174: 788–794.

    Article  PubMed  CAS  Google Scholar 

  • Dias R, Perry M, Carrasco M, et al: Effect of electroconvulsive shock on beta-endorphin immunoreactivity of rat brain, pituitary gland, and plasma. Behav Neural Biol 1981; 32: 265–268.

    Article  PubMed  CAS  Google Scholar 

  • Drucker-Colin R, Spanis C, Hunyadi J, et al: Growth hormone effects on sleep and wakefulness in the rat. Neuroendocrinology 1975; 18: 1–8.

    Article  PubMed  CAS  Google Scholar 

  • Dunn A, Gispen W: How ACTH acts on the brain. Biobehav Rev 1977; 1: 15–23.

    Article  CAS  Google Scholar 

  • Essman WB: Some neurochemical correlates of altered memory consolidation. Trans NY Acad Sci 1970; 32: 948–973.

    CAS  Google Scholar 

  • Essman WB: Nicotine-related neurochemical changes: Some implications for motivational mechanisms and differences, in Dunn W (ed): Smoking Behavior. Washington D.C.; Winston, 1973, pp 51–65.

    Google Scholar 

  • Flood J, Smith G, Jarvik M: A comparison of effects of localized brain administration of a catecholamine and protein synthesis inhibitors on memory processing. Brain Res 1980; 197: 153–165.

    Article  PubMed  CAS  Google Scholar 

  • Glen A, Whalley L: Alzheimer Disease: Early Recognition of Potentially Reversible Deficits. Edinburgh; Churchill Livingston, 1979.

    Google Scholar 

  • Gold P, Van Buskirk R: Effects of a and ß-adrenergic receptor antagonists on post-trial epinephrine modulation of memory. Behav Biol 1978; 24: 168–184.

    Article  PubMed  CAS  Google Scholar 

  • Gold P, McCarty R, Sternberg D: Peripheral catecholamines and memory modulation, in Marsan CA, and Matthies H (eds): Neuronal Plasticity and Memory Formation. New York, Raven, 1982, pp 327–338.

    Google Scholar 

  • Izquierdo I: Beta-endorphin and forgetting. Trends Pharmacol Sci 1982; 3: 455–457.

    Article  CAS  Google Scholar 

  • Izquierdo I, Perry M, Dias R, et al: Endogenous opioids, memory modulation and state dependency, in Martinez J (ed): Endogenous Peptides and Learning and Memory Processes. New York, Academic Press, 1981, pp 269–290.

    Google Scholar 

  • Jakoubek B, Semiginovsky B, Dedicova A: The effect of ACTH on the synthesis of proteins in spinal motoneurons as studied by autoradiography. Brain Res 1971; 25: 133–141.

    Article  PubMed  CAS  Google Scholar 

  • Jensen R, Martinez J, Vasquez B, et al: Amnesia produced by intraventricular administration of diethyldithiocarbamate. Neurosci Abstr 1977; 3: 235.

    Google Scholar 

  • Keyes JB: Effect of ACTH on ECS-produced amnesia of a passive avoidance task. Physiol Psychol 1974; 2: 307.

    Google Scholar 

  • Laczi F, Valkusz Z, Laszlo F, et al: Effects of lysine-vasopressin and 1-deamino-8-D-argininevasopressin on memory in healthy individuals and diabetes insipidus patients. Psychoneuroendocrinology 1982; 7: 185–193.

    Article  PubMed  CAS  Google Scholar 

  • Liljequist R, Mattila M: Effect of physostigmine and scopolamine on the memory functions of chess players. Med Biol 1979; 57: 402–405.

    PubMed  CAS  Google Scholar 

  • Martinez J, Rigter H: Endorphins alter acquisition and consolidation of an inhibitory avoidance response in rats. Neurosci Lett 1980; 19: 197–201.

    Article  PubMed  CAS  Google Scholar 

  • Martinez J, Jensen R, Messing R, et al: Central and peripheral actions of amphetamine on memory storage. Brain Res 1980a; 182: 157–166.

    Article  PubMed  CAS  Google Scholar 

  • Martinez J, Vasquez B, Rigter H, et al: Attenuation of amphetamine induced enhancement of learning by adrenal demedullation. Brain Res 1980b; 195: 433–443.

    Article  PubMed  CAS  Google Scholar 

  • McGaugh JL: Drug facilitation of learning and memory. Annu Rev Pharmacol 1973; 13: 229–241.

    Article  PubMed  CAS  Google Scholar 

  • Miczek KA, Grossman S: Punished and unpunished operant behavior after atropine administration to VMH of squirrel monkeys. J Comp Physiol Psychol 1972; 81: 318–330.

    Article  PubMed  CAS  Google Scholar 

  • Mollenauer S, Plotnick R, Bean J: Effects of scopolamine on smell discrimination in the rat. Physiol Psychol 1976; 4: 357–360.

    Google Scholar 

  • Morgane PG, Stern WC: Rhythms of the biogenic amines in the brain and sleep, in Scheving L, et al (eds): Chronobiology. Tokyo, Igaku Shoin, 1974, pp 506–11.

    Google Scholar 

  • Morley, B, Russin R: The effects of scopolamine on extinction and spontaneous recovery. Psychopharmacology 1978; 56: 301–304.

    Article  PubMed  CAS  Google Scholar 

  • Oei TP, King MG: Catecholamine and aversive learning: A review. Neurosci Biobehav Rev 1980; 4: 161–173.

    Article  PubMed  CAS  Google Scholar 

  • Overstreet DH: Pharmacological approaches to habituation of the acoustic startle response in rats. Physiol Psychol 1975; 5: 230–238.

    Google Scholar 

  • Petersen RC: Scopolamine-induced learning failures in man. Psychopharmacologia 1977; 52: 283–289.

    Article  CAS  Google Scholar 

  • Remington G, Anisman H: Genetic and autogenic variations in locomotor activity following treatment with scopolamine or d-amphetamine. Dev Psychobiol 1976; 9: 579–585.

    Article  PubMed  CAS  Google Scholar 

  • Rigter H, Riezen H: Anti-amnesic effect of ACTH4–10: Its independence of the nature of the amnesic agent and the behavioral test. Physiol Behav 1975; 14: 563–566.

    Article  PubMed  CAS  Google Scholar 

  • Rigter H, Van Riezen H, DeWied H: The effect of ACTH- and vasopressin analogues in CO2- induced retrograde amnesia in rats. Physiol Behav 1974; 13: 381–388.

    Article  PubMed  CAS  Google Scholar 

  • Ross J, McDermott L, Grossman S: Disinhibitory effects of intrahippocampal or intrahypothalamic injections of anticholinergic compounds in the rat. Pharmacol Biochem Behav 1975; 3: 631–639.

    Article  PubMed  CAS  Google Scholar 

  • Rudman D, Scott J, DelRio E, et al: Melanotropic activity in regions of rodent brain. Am J Physiol 1974; 266: 682–686.

    Google Scholar 

  • Singh HK, Ott T, Mathies H: Effects of intrahippocampal injections of atropine on different phases of a learning experiment. Psychopharmacologia 1974; 38: 247–258.

    Article  PubMed  CAS  Google Scholar 

  • Sitaram N, Weingartner H, Caine E, et al: Choline-selective enhancement of serial learning and encoding of low imagery words in man. Life Sci 1978; 22: 1555–1560.

    Article  PubMed  CAS  Google Scholar 

  • Smith C, Swash M: Possible biochemical basis of memory disorder in Alzheimer disease. Ann Neurol 1978; 3: 471–475.

    Article  PubMed  CAS  Google Scholar 

  • Stanbli U, Huston J: Avoidance learning enhanced by post trial morphine injection. Behav Neural Biol 1980; 28: 487–490.

    Article  Google Scholar 

  • Van der Poel AM: The effects of some cholinolytic drugs on a number of behavior parameters in the T-maze. Psychologia 1974; 37: 45–58.

    Google Scholar 

  • Warburton D, Brown K: Faciliation of discrimination performance by physostigmine sulphate. Psychopharmacologia 1972; 27: 275–284.

    Article  PubMed  CAS  Google Scholar 

  • Warburton D, Brown K: Effects of scopolamine on a double stimulus discrimination. Neuropharmacology 1976; 15: 659–663.

    Article  PubMed  CAS  Google Scholar 

  • Woolley DW: A method for demonstration of the effects of serotonin on learning ability, in Mikhelson M, Longo V (eds): Pharmacology of Conditioning, Learning and Retention. Oxford, Pergamon Press, 1965, pp 231–236.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Plenum Publishing Corporation

About this chapter

Cite this chapter

Khan, A.U. (1986). Role of Neuropeptides in Memory. In: Clinical Disorders of Memory. Critical Issues in Psychiatry. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5128-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5128-3_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5130-6

  • Online ISBN: 978-1-4684-5128-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics