Skip to main content

Diabetes Mellitus and Hypothyroidism Induce Changes in Myosin Isoenzyme Distribution in the Rat Heart — Do Alterations in Fuel Flux Mediate These Changes?

  • Chapter
Book cover Myocardial and Skeletal Muscle Bioenergetics

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 194))

Abstract

The different pathophysiological mechanisms which influence the formation of specific cardiac proteins are only incompletely understood. Changes in the level of specific cardiac proteins could result for example, from alterations in the hormonal milieu, changes in cardiac substrate consumption, alterations in the level of high energy phosphates and other mechanisms. Recent investigations have shown that the level of one specific group of proteins in the rat heart ventricle, the isozymes of myosin, are markedly influenced by insulin lack,1,2 and hypothyroidism. 3,4 The existence of three myosin isoenzymes in the rat ventricle (myosin V1, V2, V3) has recently been well documented.3-5 In normal rat hearts myosin V1, which has the highest Ca++-activated myosin ATPase activity, predominates, whereas in hypothyroid or diabetic rats myosin V3, which has the lowest myosin ATPase activity, becomes the predominant form.1-4 The hypothyroidism and diabetes-induced myosin V3 predominance results in a decrease in Ca++-activated myosin ATPase activity. A very close correlation between the activity of this enzyme and the maximal velocity of muscle contraction is well established.67 In addition a very close correlation exists between high levels of V1 isomyosin and the maximal speed of contraction of rat papillary muscle.8 Administration of physiological doses of thyroid hormone to hypothyroid rats and of insulin to diabetic rats reverts the myosin isoenzyme distribution to the normal pattern.1,2,4

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W.H. Dillmann, Diabetes Mellitus Induces Changes in Cardiac Myosin of the Rat. Diabetes 29: 579 (1980).

    PubMed  CAS  Google Scholar 

  2. A. Malhotra, S. Penpargkul, F.S. Fein, E.H. Sonnenblick, J. Scheuer, The Effect of Streptozotocin-induced Diabetes in Rats on Cardiac Contractile Proteins. Circ.Res. 49: 1243 (1981).

    PubMed  CAS  Google Scholar 

  3. J.F. Hoh, P.A. McGrath, P.T. Hale, Electrophoretic Analysis of Multiple Forms of Rat Cardiac Myosin: Effects of Hypophysectomy and Thyroxine Replacement. J.Mol.Cell.Card. 10: 1053 (1978).

    Article  CAS  Google Scholar 

  4. W.H. Dillmann, S. Berry, N.M. Alexander, A Physiological Dose of Triiodothyronine Normalized Cardiac Myosin Adenosine Triphosphatase Activity and Changes Myosin Isoenzyme Distribution in Semistarved Rats. Endocrinology 112: 2081 (1983).

    Article  PubMed  CAS  Google Scholar 

  5. A.M. Lompre, J.J. Mercadier, C. Wisnewsky, P. Bouveret, C. Pantaloni, A. d’Albis, K. Schwartz, Species-and age-dependent Changes in the Relative Amounts of Cardiac Myosin Isoenzymes in Mammals. Developmental Biology 84: 286 (1981).

    Article  PubMed  CAS  Google Scholar 

  6. M. Barany, ATPase Activity of Myosin Correlates with Speed of Muscle Shortening. J. Gen.Physiol. 50: 197 (1967).

    Article  PubMed  Google Scholar 

  7. C. Delcayre, B. Swynghedauw, A Comparative Study of Heart

    Google Scholar 

  8. Myosin ATPase and Light Subunits from Different Species. Pfluegers Arch. 355: 39 (1975).

    Article  Google Scholar 

  9. K. Schwartz, Y. Lecarpentier, J.L. Martin, A.M. Lompre, J.J. Mercadier, B. Swynghedauw, Myosin Isoenzymic Distribution Correlates with Speed of Myocardial Contraction. J. Mol. Cell. Card. 13: 1071 (1981).

    Article  CAS  Google Scholar 

  10. W.H. Dillmann, A. Barrieux, G.S. Reese, Effect of Diabetes and Hypothyroidism on the Predominance of Cardiac Myosin Heavy Chains Synthesized in vivo or in a Cell-free System. J. Biol. Chem. (In Press).

    Google Scholar 

  11. A.M. Sinha, P.K. Umeda, C.J. Kavinsky, C. Rajamanickam, H-J Hsu, S. Jakovcic, M. Rabinowitz, Molecular Cloning of mRNA Sequences for Cardiac α;-and ß-form Myosin Heavy Chains: Expression in Ventricles of Normal, Hypothyroid and Thyrotoxic Rabbit. Proc. Natl. Acad. Sci. USA 79: 5847 (1982).

    Article  PubMed  CAS  Google Scholar 

  12. P. Randle, P. Rubbs, The Cardiovascular System 1, the Heart in: Handbook of Physiology, Sect. 2, R.M. Berne, N. Sperelakis and S.R. Geiser, eds., American Physiological Society, Bethesda, MD. (1974)

    Google Scholar 

  13. F.L. Hoch, Metabolic Effects of Thyroid Hormones, in: Handbook of Physiology, Sect. 7: Endocrinology, R.O. Greep, E.B. Astwood, eds., American Physiological Society, Washington, D.C.

    Google Scholar 

  14. W.H. Dillmann, Myosin Isoenzyme Distribution and Ca++-activated Myosin ATPase Activity in the Rat Heart is Influenced by Fructose Feeding and Triiodothyronine. Endocrinology (In Press)

    Google Scholar 

  15. G. Van den Berghe, Metabolic Effects of Fructose in the Liver. Curr. Top.Cell.Regul. 13: 97 (1978).

    PubMed  Google Scholar 

  16. W.H. Dillmann, Influence of Thyroid Hormone Administration on Myosin ATPase Activity and Myosin Isoenzyme Distribution in the Heart of Diabetic Rats. Metabolism 31: 199 (1982).

    Article  PubMed  CAS  Google Scholar 

  17. A.K. Bhan, A. Malhotra, Trypsin Digestion of Canine Cardiac Myosin. Arch.Biochem.Biophys. 174: 24 (1976).

    Article  Google Scholar 

  18. C.H. Fiske, Y. Subbarow, The Colorimetric Determination of Phosphorus. J.Biol.Chem. 66: 375 (1925).

    CAS  Google Scholar 

  19. E. Laye, Spectrophotometric and Turbidimetric Met±ods for Measuring Proteins, in: Methods in Enzymology, S.P. Colowich, N.O. Kaplan, eds. Academic Press, N.Y. (1957).

    Google Scholar 

  20. N.M. Alexander, J.F. Jennings, Analyses for Total Serum Thyroxine by Equilibrium Competitive Protein Binding on Small, Reusable Sephadex Columns. Clin.Chem. 20: 553 (1974).

    PubMed  CAS  Google Scholar 

  21. N.M. Alexander, J.F. Jennings, Radioimmunoassay of Serum Triiodothyronine on Small, Reusable Sepandex Colums. Clin.Chem. 20: 1353 (1974).

    PubMed  CAS  Google Scholar 

  22. E. Bernt, U. Bergmeyer, D-fructose, in: Methods in Enzymatic Analysis, H.U. Bergmeyer, ed. Academic Press, N.Y. (1974).

    Google Scholar 

  23. F.E. Kaiser, C.N. Mariash, H.L. Schwartz, J.H. Oppenheimer, Inhibition of Malic Enzyme Induction by Triiodothyronine in the Diabetic Rat: Reversal by Fructose Feeding. Metabolism 29: 767 (1980).

    Article  PubMed  CAS  Google Scholar 

  24. A.E. Farah, A.A. Alousi, The Actions of Insulin on Cardiac Contractility. Life Sciences 29: 975 (1981).

    Article  PubMed  CAS  Google Scholar 

  25. A.E. Renold, G.W. Thorn, Clinical Usefulness of Fructose. Am.J.Med. 14: 163 (1955).

    Article  Google Scholar 

  26. G.N. Prager, J.A. Ontko, Direct Effects of Fructose Metabolism on Fatty Acid Oxidation in a Recombined Rat Liver Mitochondria-high Speed Supernatant System. Biochem.Biophys.Acta 424: 386 (1976).

    PubMed  CAS  Google Scholar 

  27. S.M. Lee, G.F. Tutwiler, R. Bressler, C.H. Kircher, Metabolic Control and Prevention of Nephropathy by 2-tetradecylglycidate in the Diabetic Mouse (db/db). Diabetes 31: 12 (1982).

    Article  PubMed  CAS  Google Scholar 

  28. F.J. Pearce, J. Forster, J.R. Williamson, G.F. Tutwiler, Inhibition of Fatty Acid Oxidation in Normal and Hypoxic Per-fused Hearts by 2-tetradecylglycidic acid. J. Mol. Cell. Card. 11; 893 (1979).

    Article  CAS  Google Scholar 

  29. G.F. Tutwiler, P. Dellevigne. Action of the Oral Hypoglycemic Agent 2-tetradecylglycidic Acid on Hepatic Fatty Acid Oxidation and Gluconeogenesis. J.Biol.Chem. 254: 2935 (1979)

    PubMed  CAS  Google Scholar 

  30. G.F. Tutwiler, T. Kirsch, R.J. Mohrbacker, W. Ho, Pharmacologic Profile of Methyl 2-tetradecylglycidate (McN-3716) - An Orally Effective Hypoglycemic Agent. Metabolism 27: 1539 (1978).

    Article  PubMed  CAS  Google Scholar 

  31. G.F. Tutwiler, W. Ho, R.J. Mohrbacker. 2-teradecylglycidic acid. Meth. in Enzymology 72:533 (1981).

    Google Scholar 

  32. R.W. Tuman, J. Joseph, C.R. Bowden, H.J. Brentzel, G.F. Tutwiler. Effects of 2-tetradecylglycidic acid (TDGA) on GLucose Metabolism in Skeletal Muscle. Fed. Proc. 41: 511 (1982).

    Google Scholar 

  33. L.H. Opie, M.J. Tansey, B.M. Kennelly, The Heart in Diabetes Mellitus. Part I. Biochemical Basis for Myocardial Dysfunction. S. Afr. Med. J. 56: 207 (1979).

    PubMed  CAS  Google Scholar 

  34. G.F. Tutwiler, M.T. Ryzlak, Inhibition of Metochondrial Carnitine Palmitoyl Transferase by 2-tetradecylglycidic acid (McN-3802). Life Sciences 26: 393 (1980).

    Article  PubMed  CAS  Google Scholar 

  35. T.C. Kiorpes, D. Hoerr, L. Weaner, W. Ho, M. Inman, G.F. Tutwiler, Characterization of 2-tetradecylglycidyl-coenzyme A (TDGA-CoA) as an Irreversible, Active Site-directed Inhibitor of Rat Liver Mitochondrial Carnitine: Palmitoyl Transferase-A (CPT-A). Fed.Proc. 42: 2187 (1983).

    Google Scholar 

  36. P.B. Garland, P.J. Randle, E.A. Newsholme, Citrate as an Intermediary in the Inhibition of Phosphofructokinase in Rat Heart Muscle by Fatty Acids, Ketone Bodies, Pyruvate, Diabetes and Starvation. Nature 200: 169 (1963).

    Article  PubMed  CAS  Google Scholar 

  37. P.J. Randle, P.K. Tubbs, Carbohydrate and Fatty Acid Metabolism, in: Handbook of Physiology - The cardiovascular System, Vol. I, American Physiological Society, Bethesda, MD, (1979).

    Google Scholar 

  38. J.O. Olubadewo, H.G. Wilcox, M. Heimberg, Effect of Glycerol on Oleate Metabolism by Livers from Triiodothyronine (T3) treated and euthyroid (EU) rats. 65th Annual Meeting The Endocrine Society, San Antonio, Texas (Abstract 484)(1983).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Plenum Press, New York

About this chapter

Cite this chapter

Dillmann, W.H. (1986). Diabetes Mellitus and Hypothyroidism Induce Changes in Myosin Isoenzyme Distribution in the Rat Heart — Do Alterations in Fuel Flux Mediate These Changes?. In: Brautbar, N. (eds) Myocardial and Skeletal Muscle Bioenergetics. Advances in Experimental Medicine and Biology, vol 194. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5107-8_35

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5107-8_35

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5109-2

  • Online ISBN: 978-1-4684-5107-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics