Skip to main content

Mitochondrial Transmembrane Proton Electrochemical Potential, Di- and Tricarboxylate Distribution and the Poise of the Malate-Aspartate Cycle in the Intact Myocardium

  • Chapter
Myocardial and Skeletal Muscle Bioenergetics

Abstract

The unconditional requirement of closed membrane structures for oxidative energy conversion and conservation in eucaryotes entails the problem of subcellular compartmentation. Although much can be deduced from the in vitro characteristics of the permeability properties of the mitochondrial membranes and the behaviour of enzyme systems in vitro, understanding of the regulation of certain fundamental regulatory phenomena such as mitochondrial respiration has been awaiting data obtained in intact cells and tissues. Methodological progress in the field of metabolic compartmentation has brought into focus the subcellular distribution of effectors and the metabolites related to the tricarboxylic acid cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. A. Newsholme and C. Start, “Regulation in Metabolism”, Wiley, London (1973).

    Google Scholar 

  2. P. B. Garland, P.J. Randle, and E. A. Newsholme, Citrate as an intermediary in the inhibition of phosphofructokinase in rat heart muscle by fatty acids, ketone bodies, pyruvate, diabetes and starvation, Nature 200: 169 (1963).

    Article  PubMed  CAS  Google Scholar 

  3. S. Cheema-Dhadli, B. H. Robinson, and M. L. Halperin, Proper ties of the citrate transporter in rat heart: implications for regulation of glycolysis by cytosolic citrate, Can. J. Biochem. 54: 561 (1975).

    Google Scholar 

  4. D. H. Williamson, P. Lund, and H. A. Krebs, The redox state of free nicotinamide-adenine dinucleotide in the cytoplasm and mitochondria of rat liver, Biochem. J. 103: 514 (1967).

    PubMed  CAS  Google Scholar 

  5. B. Safer, C. M. Smith, and J. R. Williamson, Control of the transport of reducing equivalents across the mitochondrial membrane in perfused rat heart, J. Mol. Cell. Cardiol2: 111 (1981).

    Article  Google Scholar 

  6. E. A. Siess, D. G. Brocks, and 0. H. Wieland, Distribution of metabolites between the cytosolic and mitochondrial compartments of hepatocytes isolated from fed rats, HoppeSeyler’s Z. Physiol.Chem. 359: 785 (1978).

    Article  CAS  Google Scholar 

  7. M. E. Tischler, D. Friedrichs, K. Coll, and J. R. Williamson, Pyridine nucleotide distributions and enzyme mass action ratios in hepatocytes from fed and starved rats, Arch. Biochem. Biophys.184: 222 (1977).

    Article  PubMed  CAS  Google Scholar 

  8. S. Soboll, R. Elbers, R. Scholz, and H.-W. Heldt, Subcellular distribution of di- and tricarboxylates and pH gradients in perfused rat liver,Hoppe-Seyler’s Z. Physiol.Chem. 361: 67 (1980).

    Article  Google Scholar 

  9. R. Elbers, H. W. Heldt, P. Schmucker, S. Soboll, and H. Wiese, Measurement of the ATP/ADP ratio in mitochondria and in the extramitochondrial compartment by fractionation of freeze-stopped liver tissue in non-aqueous media,Hoppe-Seyler’s Z. Physiol.Chem. 355: 378, (1974).

    Article  CAS  Google Scholar 

  10. R. A. Kauppinen, J. K. Hiltunen, and I. E. Hassinen, Mitochondrial membrane potential, transmembrane difference in the NAD+ redox potential and the equilibrium of the glutamate-aspartate translocase in the isolated perfused rat heart, Biochim.Biophys. Acta725: 425 (1983).

    Article  CAS  Google Scholar 

  11. R. A. Kauppinen, J. K. Hiltunen, and I. E. Hassinen, Sub-cellular distribution of phosphagens in isolated perfused rat heart, FEBS Lett.112: 273 (1980).

    Article  PubMed  CAS  Google Scholar 

  12. R. A. Kauppinen, J. K. Hiltunen, and I. E. Hassinen, Compart mentation of citrate in relation to the regulation of glycolysis and the mitochondrial transmembrane proton electrochemical potential gradient in isolated perfused rat heart, Biochim. Biophys. Acta 681: 286 (1982).

    Article  CAS  Google Scholar 

  13. R. Kauppinen, Proton electrochemical potential of the inner mitochondrial membrane in isolated perfused rat hearts, as measured by exogenous probes,Biochim. Biophys.Acta 725: 131 (1983).

    Article  CAS  Google Scholar 

  14. R. W. McGilvery and T. W. Murray, Calculated equilibria of phosphocreatine and adenosine phosphates during utilization of high energy phosphate by muscle, J. Biol. Chem. 249: 5845 (1974).

    PubMed  CAS  Google Scholar 

  15. J. K. Hiltunen and I. E. Hassinen, Energy-linked regulation of glucose and pyruvate oxidation in isolated perfused rat heart. Role of pyruvate dehydrogenase, Biochim. Biophys. Acta 440: 377 (1976).

    Article  Google Scholar 

  16. I. E. Hassinen and K. Hiltunen, Respiratory control in iso lated perfused rat heart. Role of the equilibrium relations between the mitochondrial electron carriers and the adenylate system,Biochim. Biophys.Acta 408: 319 (1975).

    Article  CAS  Google Scholar 

  17. E. M. Nuutinen, J. K. Hiltunen, and I. E. Hassinen, The glu tamate dehydrogenase system and the redox state of mitochondrial free nicotinamide adenine dinucleotide in myocardium, FEBS Lett. 128: 356 (1981).

    Article  PubMed  CAS  Google Scholar 

  18. R. J. A. Wanders, J. B. Hoek and J. M. Tager, Origin of the ammonia found in protein-free extracts of rat liver mitochondria and rat hepatocytes, Eur. J. Biochem. 110: 197 (1980).

    Article  PubMed  CAS  Google Scholar 

  19. T. Takala, J. K. Hiltunen, and I. E. Hassinen, The mechanism of ammonia production and the effect of mechanical work load on proteolysis and amino acid catabolism in isolated perfused rat heart, Biochem. J. 192: 285 (1980).

    PubMed  CAS  Google Scholar 

  20. K. F. Lalloue and A. C. Schoolwerth, Metabolite transport in mitochondria, Ann. Rev. Biochem. 48: 87 (1979).

    Google Scholar 

  21. E. M. Nuutinen, Subcellular origin of the surface fluorescence of reduced nicotinamide nucleotides in the isolated perfused rat heart, Basic. Res. Cardiol. 79: 49 (1984).

    Article  CAS  Google Scholar 

  22. T. -F. Wu and E. J. Davis, Regulation of glycolytic flux in an energetically controlled cell-free system: The effects of adenine nucleotide ratios, inorganic phosphate, pH and citrate, Arch. Biochem. Biophys. 209: 85 (1981).

    Article  CAS  Google Scholar 

  23. L. Hue, Role of fructose 2,6-bisphosphate in the regulation of glycolysis, Biochem. Soc. Transact. 11: 246 (1983).

    CAS  Google Scholar 

  24. H. A. Krebs and R. L. Veech, Pyridine nucleotide interrela tions, in: “The Energy Level and Metabolic Control in Mitochondria”, S. Papa, J. M. Tager, E. Quagliariello, and E. C. Slater, ed., Adriatica Editrice, Bari (1969).

    Google Scholar 

  25. P. V. Vignais, Molecular and physiological aspects of adenine nucleotide transport in mitochondria, Biochim. Biophys. Acta 496: 1 (1976).

    Google Scholar 

  26. D. F. Wilson, M. Erecinska, and V. L. Schramm, Evaluation of the relationship between the intra- and extramitochondrial [ATP]/[ADP] ratios using phosphoenolpyruvate carboxylkinase,J. Biol. Chem.258: 10464 (1983).

    PubMed  CAS  Google Scholar 

  27. A. Alexandre, B. Reynafarje, and A. L. Lehninger, Stoichio metry of vectorial H+ movements coupled to electron transport and to ATP synthesis in mitochondria, Proc. Natl. Acad. Sci. U.S.A. 75: 5296 (1978).

    Article  PubMed  CAS  Google Scholar 

  28. G. F. Azzone, T. Pozzan, and S. Massari, Proton electrochemi cal gradient and phosphate potential in mitochondria, Biochim. Biophys. Acta 501: 307 (1978).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Plenum Press, New York

About this chapter

Cite this chapter

Kauppinen, R.A., Hiltunen, J.K., Hassinen, I.E. (1986). Mitochondrial Transmembrane Proton Electrochemical Potential, Di- and Tricarboxylate Distribution and the Poise of the Malate-Aspartate Cycle in the Intact Myocardium. In: Brautbar, N. (eds) Myocardial and Skeletal Muscle Bioenergetics. Advances in Experimental Medicine and Biology, vol 194. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5107-8_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5107-8_25

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5109-2

  • Online ISBN: 978-1-4684-5107-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics