Skip to main content

Energy Compartmentation and Active Transport in Proximal Kidney Tubules

  • Chapter
Myocardial and Skeletal Muscle Bioenergetics

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 194))

  • 169 Accesses

Abstract

The primary work of the kidney is active transport.1 It is a long-standing observation that a linear relationship exists between the rate of sodium reabsorption by the whole kidney and its rate of oxygen consumption.2,3 Since the oxygen is consumed at the mitochondria and the energy for active transport is used by the Na,K-ATPase located at the plasma membrane on the basolateral side, a basic question in cellular physiology concerns the mechanism whereby the two processes are linked. The answer to this question leads directly to energy compartmentation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. J. Mandel and R. S. Balaban, Stoichiometry and coupling of active transport to oxidative metabolism in epithelial tissues, Am. s1. Physiol. 240: F357 - F371 (1981).

    CAS  Google Scholar 

  2. K. Thurau, Renal Na reabsorption and 02 uptake in dogs during hypoxia and hydrocholorothiazide infusion, Proc. Soc. Exp. Biol. Med. 106:714–717 (1961).

    Google Scholar 

  3. G. Torelli, E. Mella, A. Faelli, and S. Costantini, Energy requirements for sodium reabsorption in the in vivo rabbit kidney, AID. J. Physiol. 211: 576–580 (1966).

    CAS  Google Scholar 

  4. P. Needleman, J. V. Passonnau, and O. H. Lowry, Distribution of glucose and related metabolites in rat kidney, Aia1 Physiol. 215: 655–659 (1968).

    CAS  Google Scholar 

  5. H. A. Lardy and H. Wellman, Oxidative phosphoryla- tions: role of inorganic phosphate and acceptor systems in control of metabolic rates, Biol. Chem. 195: 215–224 (1952).

    Google Scholar 

  6. B. Chance and C. M. Williams, The respiratory chain and oxidative phosphorylation. Adv. Enzymol. Relat. Areas Mol. Biol. 17: 65–134 (1956).

    CAS  Google Scholar 

  7. R. S. Balaban, L. J. Mandel. S. Soltoff, and J. M. Storey, Coupling of Na-K-ATPase activity to aerobic respiratory rate in isolated cortical tubules from the rabbit kidney. Proc. Nat’. Acad. $ci. USA 77: 447–451 (1980).

    CAS  Google Scholar 

  8. W. E. Jacobus, R. W. Moreadith, and K. M. Vandegaer, Mitochondrial respiratory control. Evidence against the regulation of respiration by extramitochondrial phosphorylation potentials or by {ATP}/{ADP} ratios, J. Biol. Chem. 257: 2397–2402 (1982).

    PubMed  CAS  Google Scholar 

  9. R. L. Veech, J. W. Randolph, N. W. Cornell, and H. A. Krebs, Cytosolic phosphorylation potential, J. Biol. Chem. 254: 6538–6547 (1979).

    CAS  Google Scholar 

  10. S. P. Soltoff and L. J. Mandel, Active ion transport in the renal proximal tubule. I. Transport and metabolic studies, I. Sien. Physiol., in press (1984).

    Google Scholar 

  11. T. P. M. Akerboom, H. Bookelman, P. R. Zuurendonk, R. van der Meer, and J. M. Tager, Intramitochondrial and extramitochondrial concentrations of adenine nucleotides and inorganic phosphate in isolated hepatocytes from fasted rats, Eur. J. Biochem. 84: 413–420 (1978).

    CAS  Google Scholar 

  12. W. D. Schwenke, S. Soboll, H. J. Seitz, and H. Sies, Mitochondrial and cytosolic ATP/ADP ratios in rat liver in vivo, Biochem. I. 200: 405–408 (1981).

    CAS  Google Scholar 

  13. K. F. Lalloue and A. C. Schoolwerth, Metabolic transport in mitochondria, Ann. Rev. Biochem. 48: 871–922 (1979).

    Google Scholar 

  14. R. S. Balaban, Nuclear magnetic resonance studies of epithelial metabolism and function, Fed. Proc. 41: 42–47 (1982).

    Google Scholar 

  15. R. S. Balaban, D. G. Gadian, and G. K. Radda, Phosphorus nuclear magnetic resonance study of the rat kidney in vivo, Kidney Int. 20: 575–579 (1981).

    Article  PubMed  CAS  Google Scholar 

  16. S. P. Soltoff and L. J. Mandel, Active ion transport in the renal proximal tubule. III. The ATP dependence of the sodium pump, J. Gen. Physiol., in press (1984).

    Google Scholar 

  17. P. L. Jorgensen, Regulation of the (Na+ + K+)-activated ATP hydrolyzing enzyme system in rat kidney. I. The effect of adrenalectomy and the supply of sodium on the enzyme system, Biochim. Biophys. Acta 151: 212–224 (1968).

    CAS  Google Scholar 

  18. J. M. Braughler and C. N. Corder, Purification of the (Na+ + K4)-adenosine triphosphatase from human renal tissue, Biochim. Biophys. Acta 481: 313–327 (1977).

    PubMed  CAS  Google Scholar 

  19. S. I. Harris, L. Patton, L. Barrett, and L. J. Mandel, (Na+, K+)-ATPase kinetics within the intact renal cell, J. Biol. Chem. 257: 6996–7002 (1982).

    Google Scholar 

  20. S. R. Gullans, P. C. Brazy, S. P. Soltoff, V. W. Dennis, and L. J. Mandel, Metabolic inhibitors: Effects on metabolism and transport in rabbit proximal tubule, Am. J. Physiol. 243: F133 - F140 (1982).

    CAS  Google Scholar 

  21. J. Kyte, Immunoferritin determination of the distribution of (Na+ + K+) ATPase over the plasma membranes of renal convoluted tubules. II. Proximal segment, J. Cell. Biol. 68: 304–318 (1976).

    Article  PubMed  CAS  Google Scholar 

  22. R. S. Balaban, S. Soltoff, J. M. Storey, and L. J. Mandel, Improved renal cortical tubule suspension: spectrophotometric study of 02 delivery, Am. J. physiol. 238: F50 - F59 (1980).

    CAS  Google Scholar 

  23. P. C. Brazy, S. R. Gullans, L. J. Mandel, and V. W. Dennis, Metabolic requirement for inorganic phosphate by the rabbit proximal tubule. Evidence for a Crabtree effect, J. Clin. Invest. 70: 53–62 (1982).

    CAS  Google Scholar 

  24. P. C. Brazy and V. W. Dennis, Characteristics of glucose-phlorizin interactions in isolated proximal tubules, Am. I. Physiol. 234: F279 - F286 (1978).

    CAS  Google Scholar 

  25. A. Kleinzeller, J. Kolinska, and I. Benes, Transport of monosaccharides in kidney-cortex cells, Biochem. J. 104: 852–860 (1967).

    Google Scholar 

  26. A. N. Wick, D. R. Drury, H. J. Nakada, and J. B. Wolfe, Localization of the primary metabolic block produced by 2-deoxyglucose, a. Biol. Chem. 224: 963–969 (1957).

    Google Scholar 

  27. P. C. Brazy, L. J. Mandel, S. R. Gullans, and S. P. Soltoff, Interactions between phosphate and oxidative metabolism in proximal renal tubules, AM. J. Physiol., in press (1984).

    Google Scholar 

  28. D. Freeman, S. Bartlett, G. Radda, and B. Ross, Energetics of sodium transport in the kidney. Saturation transfer of P-NMR. Biochim. Biophys. Acta 762:325–336 (1983).

    Google Scholar 

  29. B. Kaissling and W. Kriz, Structural analysis of the rabbit kidney, Advances in Anatomy Embryology and Cell Bioloas 56: 1–123 (1979).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Plenum Press, New York

About this chapter

Cite this chapter

Mandel, L.J., Soltoff, S.P., Brazy, P.C. (1986). Energy Compartmentation and Active Transport in Proximal Kidney Tubules. In: Brautbar, N. (eds) Myocardial and Skeletal Muscle Bioenergetics. Advances in Experimental Medicine and Biology, vol 194. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5107-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5107-8_16

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5109-2

  • Online ISBN: 978-1-4684-5107-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics