Skip to main content

Control of Respiration in Intact Muscle

  • Chapter
  • 169 Accesses

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 194))

Abstract

We believe that the hydrolysis of ATP provides the free energy for all cell function, and we know that the ultimate source of almost all ATP produced in muscle is oxidative metabolism (Fig. 1). We’d like to know, in as much detail as possible, the mechanism coupling these two fundamental processes, whereby a change in the rate of ATP utilization leads to a change in the rate of oxidative phosphorylation. That brings me to my second reason for choosing the first figure. In what can be thought of as perhaps the first attempt to model the control of respiration in muscle, Chance and Connelly’ used a scheme little more complicated than this. Having determined the responses of isolated mitochondria to limiting concentrations of ADP or inorganic phosphate (Pi), they assumed that the rest of the cell could be represented simply as an ATPase. I mention this not to impugn or embarass two distinguished scientists, but to illustrate the point that, in general, workers in this field have shown a surprising lack of awareness of, or concern for, events occurring outside the mitochondrial inner membrane. To the extent that this audience shares that attitude, I hope to correct it. Fig. 2 shows a current, schematic description of the reactions believed to couple oxidative phosphorylation to ATP hydrolysis, which I hope will meet with everyone’s approval.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B. Chance and C. M. Connelly, A method for the estimation of the increase in concentration of adenosine diphosphate in muscle sarcosomes following a contraction, Nature (London) 179: 1235 (1957).

    Article  CAS  Google Scholar 

  2. E. J. Davis and L. Lumeng, Relationships between the phosphorylation potentials generated by liver mitochondria and respiratory state under conditions of adenosine diphosphate control, J. Biol. Chem. 250: 2275 (1975).

    CAS  Google Scholar 

  3. K. Nishiki, M. Erecinska, and D. F. Wilson, Energy relationships between cytosolic metabolism and mitochondrial respiration in rat heart, Am. J. Physiol. 234: C73 (1978).

    PubMed  CAS  Google Scholar 

  4. J. H. Williamson, Mitochondrial function in the heart, Ann. Rev. Physiol. 41: 485 (1979).

    Article  CAS  Google Scholar 

  5. R. G. Hansford, Control of mitochondrial respiration, Curr. Top. Bioenerg. 10: 217 (1980).

    CAS  Google Scholar 

  6. W. E. Jacobus, R. W. Moreadith, and K. M. Vandegaer, Mitochondrial respiratory control. Evidence against the regulation of respiration by extramitochondrial phosphorylation potentials or by [ATP]/[ADP] ratios, J. Biol. Chem. 257: 2397 (1982).

    PubMed  CAS  Google Scholar 

  7. A. K. Groen, R. Van der Meer, H. V. Westerhoff, R. J. A. Wanders, T. P. M. Akerboom, and J. M. Tager, Control of metabolic fluxes, in: “Metabolic Compartmentation”, H. Sies, ed., Academic Press, New York (1982).

    Google Scholar 

  8. M. Mahler, The relationship between initial creatine phosphate breakdown and recovery oxygen consumption for a single isometric tetanus of the frog sartorius muscle at 20°C, J. Gen. Physiol. 73: 159 (1979).

    Article  PubMed  CAS  Google Scholar 

  9. M. Mahler, C. Louy, and E. Homsher, A reappraisal of diffusion, solubility, and consumption of oxygen in frog skeletal muscle, J. Gen. Physiol. (submitted).

    Google Scholar 

  10. M. Mahler, Diffusion and consumption of oxygen in the resting frog sartorius muscle, J. Gen. Physiol. 71: 533 (1978).

    Article  PubMed  CAS  Google Scholar 

  11. M. Mahler, Kinetics of oxygen consumption after a single isometric tetanus of the frog sartorius muscle at 20°C, J. Gen. Physiol. 71: 559 (1978).

    Article  PubMed  CAS  Google Scholar 

  12. D. K. Hill, The time course of the oxygen consumption of stimulated frog’s muscle, J. Physiol. (London) 98: 207 (1940).

    CAS  Google Scholar 

  13. D. K. Hill, The time course of evolution of oxidative recovery heat of frog’s muscle, J. Physiol. (London) 98: 454 (1940).

    CAS  Google Scholar 

  14. F. D. Carlson, The mechanochemistry of muscular contraction, a critical review of in vivo studies, Prog. Biophys. 13: 262 (1962).

    Google Scholar 

  15. W. F. H. Mommaerts, Energetics of muscular contraction, Physiol. Rev. 49: 427 (1969).

    CAS  Google Scholar 

  16. C. Gilbert, K. M. Kretzschmar, D. R. Wilkie, and R. C. Woledge, Chemical change and energy output during muscular contraction, J. Physiol. (London) 218: 163 (1971).

    CAS  Google Scholar 

  17. E. Homsher, J. A. Rall, A. Wallner, and N. V. Ricciutti, Energy liberation and chemical change in frog skeletal muscle during single isometric contraction, J. Gen. Physiol. 65: 1 (1975).

    Article  PubMed  CAS  Google Scholar 

  18. M. J. Dawson, D. G. Gadian, and D. R. Wilkie, Contraction and recovery of living muscles studied by 31P nuclear magnetic resonance, J. Physiol. (London) 267: 703 (1977).

    CAS  Google Scholar 

  19. P. Arese, R. Kirsten, and E. Kirsten, Metabolitgehalte und -gleichgewichte nach tetanischer Kontraktion des Taubebrustmuskels und des Rattenskeletmuskels, Biochem. Z. 341: 523 (1965).

    CAS  Google Scholar 

  20. R. H. T. Edwards, R. C. Harris, E. Hultman, and L. Nordesjo, Phosphagen utilization and resynthesis in successive isometric contractions, sustained to fatigue, of the quadriceps muscle in man, J. Physiol. (London) 224: 40P (1972).

    Google Scholar 

  21. D. C. Gower and K. M. Kretzschmar, Heat production and chemical change during isometric contraction of rat soleus muscle, J. Physiol. (London) 258: 659 (1976).

    CAS  Google Scholar 

  22. M. T. Crow and M. J. Kushmerick. Chemical energetics of slow and fast-twitch muscles of the mouse, J. Gen. Physiol. 79: 147 (1982).

    Article  CAS  Google Scholar 

  23. J. Piiper and P. Spiller, Repayment of 02 debt and resynthesis of high-energy phosphates in gastrocnemius muscle of the dog, J. Appl. Physiol. 28: 657 (1970).

    PubMed  CAS  Google Scholar 

  24. M. J. Kushmerick and R. J. Paul, Aerobic recovery metabolism following a single isometric tetanus in frog sartorius muscle at 0°C, J. Physiol. (London) 254: 693 (1976).

    CAS  Google Scholar 

  25. F. D. Carlson, D. Hardy, and D. R. Wilkie, The relation between heat produced and phosphorylcreatine split during isometric contraction of frog’s muscle, J. Physiol. (London) 189: 209 (1967).

    CAS  Google Scholar 

  26. H. J. Hohorst, M. Reim, and H. Bartels, Studies on the creatine kinase equilibrium in muscle and the significance of ATP and ADP levels, Biochem. Biophys. Res. Commun. 7: 142 (1962).

    Article  CAS  Google Scholar 

  27. J. Piiper, P. E. DiPrampero, and P. Cerretelli, Oxygen debt and high energy phosphates in gastrocnemius muscle of the dog, Am. J. Physiol. 215: 523 (1968).

    PubMed  CAS  Google Scholar 

  28. M. J. Kushmerick, unpublished results.

    Google Scholar 

  29. W. E. Jacobus and D. M. Diffley, Regulation of heart mitochondrial respiration by [creatine] and [phosphocreatine], Biophys. J. 41: 249a (1983).

    Google Scholar 

  30. W. E. Jacobus, Regulation of mitochondrial respiration, (these proceedings).

    Google Scholar 

  31. D. F. Wilson, M. Erecinska, and P. L. Dutton, Thermodynamic relationships in mitochondrial oxidative phosphorylation, Annu. Rev. Biophys. Bioeng. 3: 203 (1974).

    Article  PubMed  Google Scholar 

  32. B. Chance, G. Mauriello, and X. Aubert, ADP arrival at muscle mitochondria following a twitch, in: “Muscle as a Tissue”, K. Rodahl and S. M. Horvath, eds., McGraw-Hill, New York (1962).

    Google Scholar 

  33. P. Mitchell, Chemiosmotic coupling in oxidative and photosynthetic phosphorylation, Biol. Rev. Cambridge Phil. Soc. 41: 445 (1966).

    Article  CAS  Google Scholar 

  34. P. Mitchell, Vectorial chemistry and the molecular mechanics of chemiosmotic coupling: power transmission by proticity, Biochem. Soc. Trans. 4: 399 (1976).

    CAS  Google Scholar 

  35. P. V. Vignais, Molecular and physiological aspects of adenine nucleotide transport in mitochondria, Biochim. Biophys. Acta 456: 1 (1976).

    CAS  Google Scholar 

  36. M. Klingenberg, The ADP-ATP translocation in mitochondria, a membrane potential controlled transport, J. Membr. Biol. 56: 97 (1980).

    Article  PubMed  CAS  Google Scholar 

  37. J. M. H. Souverijn, L. A. Huisman, J. Rosing, and A. Kemp, Jr., Comparison of ADP and ATP as substates for the adenine nucleotide translocator, Biochim. Biophys. Acta 305: 185 (1973).

    Article  CAS  Google Scholar 

  38. H. Jacobs, H. W. Heldt, and M. Klingenberg, High activity of creatine kinase in mitochondria from heart and brain and evidence for a separate mitochondrial isoenzyme of creatine kinase, Biochem. Biophys. Res. Commun. 16: 516 (1964).

    Article  CAS  Google Scholar 

  39. J. A. Illingworth, W. C. L. Ford, K. Kobayashi, and J. R. Williamson, Regulation of myocardial energy metabolism, Recent Adv. Stud. Card. Struct. Metab. 8: 271 (1975).

    CAS  Google Scholar 

  40. J. W. R. Lawson and R. L. Veech, Effects of pH and free Mg2+ on the Keg of the creatine kinase reaction and other phosphate hydrolyses and phosphate transfer reactions, J. Biol. Chem. 254: 6528 (1979).

    PubMed  CAS  Google Scholar 

  41. R. A. Meyer, Am. J. Physiol. (in press).

    Google Scholar 

  42. V. A. Saks, N. V. Lipina, V. N. Smirnov, and E. I. Chazov, Studies of energy transport in heart cells. The functional coupling between mitochondrial creatine phosphokinase and ATP-ADP translocase: kinetic evidence, Arch. Biochem. Biophys. 173: 34 (1976).

    Article  CAS  Google Scholar 

  43. V. A. Saks, V. V. Kupriyanov, G. V. Elizarova, and W. E. Jacobus, Studies of energy transport in heart cells. The importance of creatine kinase localization for the coupling of mitochondrial phosphorylcreatine production to oxidative phosphorylation, J. Biol. Chem. 255: 755 (1980).

    PubMed  CAS  Google Scholar 

  44. R. W. Moreadith and W. E. Jacobus, Creatine kinase of heart mitochondria. Functional coupling of ADP transfer to the adenine nucleotide translocase, J. Biol. Chem. 257: 899 (1982).

    PubMed  CAS  Google Scholar 

  45. S. Erickson-Viitanen, P. Viitanen, P. J. Geiger, W. C. T. Yang, and S. P. Bessman, Compartmentation of mitochondrial creatine phosphokinase. I. Direct demonstration of compartmentation with the use of labeled precurcors, J. Biol. Chem. 257: 14395 (1982).

    CAS  Google Scholar 

  46. S. Erickson-Viitanen, P. J. Geiger, P. Viitanen, and S. P. Bess-man, Compartmentation of mitochondrial creatine phosphokinase. II. The importance of the outer mitochondrial membrane for mitochondrial compartmentation, J. Biol. Chem. 257: 14405 (1982).

    PubMed  CAS  Google Scholar 

  47. E. Pfaff, H. W. Heldt, and M. Klingenberg, Adenine translocation of mitochondria. Kinetics of the adenine nucleotide exchange, Eur. J. Biochem. 10: 484 (1969).

    Article  PubMed  CAS  Google Scholar 

  48. I. H. Segel, “Biochemical Calculations”, Wiley, New York (1967), p. 245.

    Google Scholar 

  49. B. Chance and G. R. Williams, Respiratory enzymes in oxidative phosphorylation. VI. The effects of adenosine diphosphate on azide-treated mitochondria, J. Biol. Chem. 221: 477 (1956).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Plenum Press, New York

About this chapter

Cite this chapter

Mahler, M. (1986). Control of Respiration in Intact Muscle. In: Brautbar, N. (eds) Myocardial and Skeletal Muscle Bioenergetics. Advances in Experimental Medicine and Biology, vol 194. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5107-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5107-8_15

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5109-2

  • Online ISBN: 978-1-4684-5107-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics