Models of Aldosterone Action on Sodium Transport: Emerging Concepts

  • Diana Marver
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 196)


This article will detail models of aldosterone action in target epithelia such as kidney and toad bladder with respect to Na transport. The renal target cell responsible for aldosterone-dependent Na reabsorption is considered to be the cortical collecting tubule (CCT), while that responsible for acid secretion is characterized by the inner strip of the outer medullary collecting duct.1 An analogous situation is found in toad bladder, with one cell type (granular cell) responsible for aldosterone-dependent Na reabsorption while another (mitochondrial-rich cell) modulating acid secretion in response to steroid.2 With respect to K transport, these two tissues differ, in that aldosterone does not modify the secretory rate of K in the toad bladder due to a vanishingly small apical membrane K permeability, while in the mammalian kidney, aldosterone both increases the urinary excretion of K and the secretion of K by CCTs under steady-state conditions.3–5 With regard to the Na reabsorbing cell, the following paragraphs will both detail existing data and the various working hypotheses currently being evaluated to interpret that data with respect to the means by which aldosterone alters (a) luminal membrane Na permeability, and (b) NaK ATPase activity. In addition, the possible roles of energy and phospholipid metabolism in this process will be discussed. Since some actions of aldosterone parallel those of ADH (antidiuretic hormone), data on both hormones will be contrasted as appropriate in order to help narrow the possible explanations into a cohesive model for the Na reabsorbing cell.


Luminal Membrane Toad Urinary Bladder Toad Bladder Aldosterone Action Renal Fluid Electrolyte 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. Marver, Evidence of corticosteroid action along the nephron. Am. J. Physiol. 246 (Renal Fluid Electrolyte Physiol 15): F111 (1984).PubMedGoogle Scholar
  2. 2.
    D. Marver, Aldosterone action in target epithelia. In: Munson P (ed) Vitamins and Hormones, vol. 12. Academic Press, New York, p. 55 (1981).Google Scholar
  3. 3.
    H. J. Rodriguez, W. P. Weismann, S. Klahr, Effects of aldosterone on K transport in the toad bladder. Am. J. Physiol. 229: 99 (1975).PubMedGoogle Scholar
  4. 4.
    G. J. Schwartz, M. B. Burg, Mineralocorticoid effects on cation transport by CCTs in vitro. Am. J. Physiol. 235 (Renal Fluid Electrolyte Physiol 4): F576 (1978).PubMedGoogle Scholar
  5. 5.
    M. J. Field, B. A. Stanton, G. H. Giebisch, Differential acute effects of aldosterone, dexamethasone and hyperkalemia on distal tubular K secretion in the rat kidney. J. Clin. Invest. 74: 1792 (1984).PubMedCrossRefGoogle Scholar
  6. 6.
    D. Marver, J. Stewart, J. W. Funder, D. Feldman, I. S. Edelman, Renal aldosterone receptors: studies with 3H aldosterone and the anti-mineralocorticoid 3H spirolactone SC-26304. Proc. Natl. Acad. Sci. USA 71: 1431 (1974).PubMedCrossRefGoogle Scholar
  7. 7.
    B. Lindemann, W. Van Driessche, Na specific membrane channels of frog skin are pores: current fluctuations reveal high turnover. Science 195: 292 (1977).PubMedCrossRefGoogle Scholar
  8. 8.
    H. S. Chase, Q. A1-Awqati, Calcium reduces the Na permeability of luminal membrane vesicles from toad bladder. J. Gen. Physiol. 81: 643 (1983).PubMedCrossRefGoogle Scholar
  9. 9.
    L. G. Palmer, J. H.-Y. Li, B. Lindemann, I. S. Edelman, Aldosterone control of the density of Na channels in the toad urinary bladder. J. Membrane Biol. 64: 91 (1982).CrossRefGoogle Scholar
  10. 10.
    I. S. Edelman, Aldosterone and Na transport. In: McKerns K. W. (ed) Functions of the Adrenal Cortex. Appleton-CenturyCrofts, New York, p. 80 (1968).Google Scholar
  11. 11.
    I. S. Edelman, G. M. Fimognari, On the biochemical mechanism of action of aldosterone. Recent Prog. Horm. Res. 24: 1 (1968).PubMedGoogle Scholar
  12. 12.
    H. S. Frazier, E. J. Dempsey, A. Leaf, Movement of Na across the mucosal surface of the isolated toad bladder and its modification by ADH. J. Gen. Physiol. 45: 529 (1962).PubMedCrossRefGoogle Scholar
  13. 13.
    N. S. Lichtenstein, A. Leaf, Effect of amphotericin B on the permeability of the toad bladder. J. Clin. Invest. 44: 1328 (1965).PubMedCrossRefGoogle Scholar
  14. 14.
    A. Frenkel, M. Ekblad, I. S. Edelman, Effects of sulfhydryl reagents on basal and ADH-stimulated Na transport in toad bladder. Biomembranes 7: 61 (1975).PubMedGoogle Scholar
  15. 15.
    W. P. Weismann, P. K. Chiang, J. P. Johnson, Aldosterone stimulates phospholipid methylations in cultured toad urinary bladder. Clin. Res. 31: 445A (1983).Google Scholar
  16. 16.
    W. P. Weismann, J. P. Johnson, S. Sariban-Sohraby, M. B. Burg, Methylation stimulates Na uptake in apical membrane vesicle from A6 cells: similarity to aldosterone. Clin. Res. 32: 459A (1984).Google Scholar
  17. 17.
    S. Sariban-Sohraby, M. Burg, W. P. Wiesmann, P. K. Chiang, J. P. Johnson, Methylation increases Na transport into A6 apical membrane vesicles: possible mode of aldosterone action. Science 225: 745 (1984).PubMedCrossRefGoogle Scholar
  18. 18.
    R. F. O’Dea, O. H. Viveros, E. J. Diliberto, Protein carboxymethylation: role in the regulation of cell functions. Biochem. Pharm. 30: 1163 (1981).PubMedCrossRefGoogle Scholar
  19. 19.
    V. P. S. Chauhan, V. K. Kalra, Effect of phospholipid methylation on Ca transport and Ca + Mg ATPase activity in kidney cortex basolateral membranes. BBA 727: 185 (1983).PubMedCrossRefGoogle Scholar
  20. 20.
    P. A. Craven, F. R. DeRubertis, Phospholipid methylation in Ca responsive renal medullary prostaglandin synthesis. Clin. Res. 31: 515A (1983).Google Scholar
  21. 21.
    T. Yorio, P. J. Bentley, Phospholipase A and the mechanism of action of aldosterone. Nature 271: 79 (1978).PubMedCrossRefGoogle Scholar
  22. 22.
    D. B. P. Goodman, J. B. Allen, H. Rasmussen, Studies on the mechanism of action of aldosterone: hormone-induced changes in lipid metabolism. Biochemistry 10: 3825 (1971).PubMedCrossRefGoogle Scholar
  23. 23.
    E. L. Lien, D. B. P. Goodman, H. Rasmussen, Effects of an acetyl-coenzyme A carboxylase inhibitor and a Na-sparing diuretic on aldosterone-stimulated Na transport, lipid synthesis and phospholipid fatty acid composition in the toad urinary bladder. Biochemistry 14: 2749 (1975).PubMedCrossRefGoogle Scholar
  24. 24.
    D. B. P. Goodman, M. Wong, H. Rasmussen, Aldosterone-induced membrane phospholipid fatty acid metabolism in the toad urinary bladder. Biochemistry 14: 2803 (1975).PubMedCrossRefGoogle Scholar
  25. 25.
    E. L. Lien, D. B. P. Goodman, H. Rasmussen, Effects of inhibitors of protein and RNA synthesis on aldosterone-stimulated changes in phospholipid fatty acid metabolism in the toad urinary bladder. BBA 421: 210 (1976).PubMedGoogle Scholar
  26. 26.
    R. Kinne, R. Kirsten, Der einfluss von aldosterone and die aktivitat mitochondrialer and cytoplasmatischer enzyme in der rattenniere. Pflugers Arch. 300: 244 (1968).CrossRefGoogle Scholar
  27. 27.
    E. Kirsten, R. Kirsten, A. Leaf, G. W. G. Sharp, Increased activity of enzymes of the TCA cycle in response to aldosterone in the toad bladder. Pflugers Arch. 300: 213 (1968).CrossRefGoogle Scholar
  28. 28.
    P. Y. Law, I. S. Edelman, Induction of citrate synthase by aldosterone in the rat kidney. J. Molecular Biol. 41: 41 (1978).Google Scholar
  29. 29.
    R. C. DeSousa, A. Grosso, The mode of action of vasopressin: membrane microstructure and biological transport. J. Physiol. (Paris) 77: 643 (1981).Google Scholar
  30. 30.
    G. A. Porter, In vitro inhibition of aldosterone-stimulated Na transport by steroidal spirolactones. Mol. Pharmacol. 4:224 (1968).PubMedGoogle Scholar
  31. 31.
    L. G. Palmer, I. S. Edelman, Control of apical Na permeability in the toad urinary bladder by aldosterone. Ann. NY Acad. Sci. 372: 1 (1981).PubMedCrossRefGoogle Scholar
  32. 32.
    H. Garty, I. S. Edelman, Amiloride-sensitive trypsinization of apical Na channels. J. Gen. Physiol. 81: 785 (1983).PubMedCrossRefGoogle Scholar
  33. 33.
    C. S. Park, J. Kipnowski, D. D. Fanestil, Role of carboxyl group in Na entry step at apical membrane of toad urinary bladder. Am. J. Physiol. 245 (Renal Fluid Electrolyte Physiol 14): F707 (1983).PubMedGoogle Scholar
  34. 34.
    J. Kipnowski, C. S. Park, D. D. Fanestil, Modification of carboxyl of Na channel inhibits aldosterone action on Na transport. Am. J. Physiol. 245 (Renal Fluid Electrolyte Phyiol 14): F726 (1983).PubMedGoogle Scholar
  35. 35.
    A. W. Cuthbert, N. K. Shum, Effects of ADH and aldosterone on amiloride binding in toad bladder epithelial cells. Proc. Royal Soc. London 189B: 543 (1975).CrossRefGoogle Scholar
  36. 36.
    J. H.-Y. Li, L. G. Palmer, I. S. Edelman, B. Lindemann, The role of Na-channel density in the natriferic response of the toad urinary bladder to ADH. J. Membrane Biol. 64: 77 (1982).CrossRefGoogle Scholar
  37. 37.
    C. Prasad, R. M. Edwards, Stimulation of rat pituitary phospholipid methyltransferase by ADH but not oxytocin. BBRC 103: 559 (1981).PubMedGoogle Scholar
  38. 38.
    S. Alemahy, I. Varela, J. M. Mato, Stimulation by ADH and angiotensin of phospholipid methyltransferase in isolated rat hepatocytes. FEBS Letters 135: 111 (1981).CrossRefGoogle Scholar
  39. 39.
    J. M. Saavedra, Y. Kloog, C. Chevillard, J. Fernandez-Pardal, High-protein carboxylmethylase activity and low endogenous methyl acceptor proteins in posterior pituitary lobe of rats lacking neurophysin-ADH. J. Neurochemistry 41: 194 (1983).Google Scholar
  40. 40.
    A. Y.-C. Liu, P. Greengard, Aldosterone-induced increase in protein phosphatase activity of toad bladder. Proc. Natl. Acad. Sci. USA 71: 3869 (1974).PubMedCrossRefGoogle Scholar
  41. 41.
    L. G. Palmer, I. S. Edelman, B. Lindemann, Current-voltage analysis of apical Na transport in toad urinary bladder: effects of inhibitors of transport and metabolism. J. Membrane Biol. 57: 59 (1980).CrossRefGoogle Scholar
  42. 42.
    S. K. Masur, Gronowicz, Ruthenium red and horseradish peroxidase used as a double marker to demonstrate endocytosis. Quantitative EM and cytochemical studies of ADH action in toad bladder. In: Physical Methods in the Study of Epithelia. New York, Alan R. Liss, Inc., p. 197 (1983).Google Scholar
  43. 43.
    S. A. Lewis, J. L. C. de Moura, Incorporation of cytoplasmic vesicles into apical membrane of mammalian urinary bladder epithelium. Nature 297: 685 (1982).PubMedCrossRefGoogle Scholar
  44. 44.
    D. L. Stetson, S. A. Lewis, W. Alles, J. B. Wade, Evaluation by capacitance measurements of ADH induced membrane area changes in toad bladder. BBA 689: 627 (1982).CrossRefGoogle Scholar
  45. 45.
    A. N. Charney, P. I. Silva, A. Besarab, F. H. Epstein, Separate effects of aldosterone, DOCA and methylprednisolone on renal NaK ATPase. Am. J. Physiol. 227: 345 (1974).PubMedGoogle Scholar
  46. 46.
    U. Schmidt, J. Schmid, H. Schmid, U. C. Dubach, NaK ATPase. A possible target of aldosterone. J. Clin. Invest. 55: 655 (1975).PubMedCrossRefGoogle Scholar
  47. 47.
    J. S. Handler, A. S. Preston, M. Perkins, M. Matsumura, The effect of adrenal steroid hormones on epithelia formed in culture by A6 cells. Ann. NY Acad. Sci. 372: 442 (1981).PubMedCrossRefGoogle Scholar
  48. 48.
    J. P. Johnson, D. C. Jones, Hormonal regulation of NaK ATPase in cultured epithelial cells. Kidney Int. 25: 330 (1984).Google Scholar
  49. 49.
    K. Geering, M. Girardet, C. Bron, J.-P. Krahbenbuhl, B. C. Rossier, Hormonal regulation of NaK ATPase biosynthesis in the toad bladder. J. Biol. Chem. 257: 10338 (1982).PubMedGoogle Scholar
  50. 50.
    C. S. Park, I. S. Edelman, Effect of aldosterone on abundance and phosphorylation kinetics of NaK ATPase of toad urinary bladder. Am. J. Physiol. 246:F5O9 (1984).Google Scholar
  51. 51.
    C. S. Park, I. S. Edelman, Dual action of aldosterone on toad bladder: Na permeability and Na pump. Am. J. Physiol. 246 (Renal Fluid Electrolyte Physiol 15): F517 (1984).PubMedGoogle Scholar
  52. 52.
    K. J. Petty, J. P. Kokko, D. Marver, Regulation of rabbit CCT NaK ATPase activity by aldosterone. J. Clin. Invest. 68: 1514 (1981).PubMedCrossRefGoogle Scholar
  53. 53.
    A. Doucet, A. I. Katz, Short-term effect of aldosterone on NaK ATPase in single nephron segments. Am. J. Physiol. 241 (Renal Fluid Electrolyte Physiol 10): F273 (1981).PubMedGoogle Scholar
  54. 54.
    G. El Mernissi, A. Doucet, Short-term effect of aldosterone on renal Na transport and tubular NaK ATPase in the rat. Pflugers Arch. 399: 139 (1983).PubMedCrossRefGoogle Scholar
  55. 55.
    G. El Mernissi, A. Doucet, Short-term effects of aldosterone and dexamethasone on NaK ATPase along the rabbit nephron. Pflugers Arch. 399: 147 (1983).PubMedCrossRefGoogle Scholar
  56. 56.
    S. K. Mujais, M. A. Checkal, S. K. Lee, A. I. Katz, Relationships between adrenal steroids and renal NaK ATPase. Pflugers Arch. 402: 48 (1984).PubMedCrossRefGoogle Scholar
  57. 57.
    J. B. Wade. R. G. O’Neil, J. L. Pryor, E. L. Boulpaep, Modulation of cell membrane area in renal collecting tubules by corticosteroid hormones. J. Cell Biol. 81: 439 (1979).PubMedCrossRefGoogle Scholar
  58. 58.
    L. C. Garg, M. A. Knepper, M. G. Burg, Mineralocorticoíd effects on NaK ATPase in individual nephron segments. Am. J. Physiol. 240 (Renal Fluid Electrolyte Physiol 9): F536 (1981).PubMedGoogle Scholar
  59. 59.
    E. El Mernissi, D. Chabardes, A. Doucet, A. Hus-Citharel, M. Imbert-Teboul, F. LeBouffant, M. Montegut, S. Siaume, F. Morel, Changes in tubular basolateral membrane markers after chronic DOCA treatment. Am. J. Physiol. 245 (Renal Fluid Electrolyte Physiol 14): F100 (1983).PubMedGoogle Scholar
  60. 60.
    S. K. Mujais, M. A. Checkal, W. J. Jones, J. P. Hayslett, A. I. Katz, Regulation of renal NaK ATPase in the rat. J. Clin. Invest. 73: 13 (1984).PubMedCrossRefGoogle Scholar
  61. 61.
    O. Hansen, J. Jensen, J. G. Norby, P. Ottolenghi, A new proposal regarding the subunit composition of (Na+ + K+) ATPase. Nature 280: 410 (1979).PubMedCrossRefGoogle Scholar
  62. 62.
    T. D. Hexum, The effect of catecholamines on transport (Na, K) adenosine triphosphatase. Biochem. Pharmacol. 26: 1221 (1977).PubMedCrossRefGoogle Scholar
  63. 63.
    R. B. Lingham, A. K. Sen, Regulation of rat brain (Na+ + K+)ATPase activity by cyclic AMP. Biochem. Biophys. Acta. 688: 475 (1982).PubMedCrossRefGoogle Scholar
  64. 64.
    J. M. Braughler, C. N. Corder, Reversible inactivation of purified (Na+ + K+)-ATPase from human renal tissue by cyclic AMP-dependent protein kinase. Biochim. Biophys. Acta. 524: 455 (1978).PubMedGoogle Scholar
  65. 65.
    K. P. Wheeler, R. Whittam, The involvement of phosphatidylserine in adenosine triphosphatase activity of the sodium pump. J. Physiol. 207: 303 (1970).PubMedGoogle Scholar
  66. 66.
    P. M. Rosoff, L. C. Cantley, Increasing the intracellular Na+ concentration induces differentiation in a pre-B lymphocyte cell line. Proc. Natl. Acad. Sci. USA 80: 7547 (1983).PubMedCrossRefGoogle Scholar
  67. 67.
    R. L. Smith, I. G. Macara, R. Levenson, D. Housman, L. Cantley, Evidence that a Na+/Ca2+ antiport system regulates murine erythroleukemia cell differentiation. J. Biol. Chem. 257: 773 (1982).PubMedGoogle Scholar
  68. 68.
    P. M. Rosoff, L. F. Stein, L. C. Cantley, Phorbol esters induce differentiation in a pre-B-lymphocyte cell line by enhancing Na+/H+ exchange. J. Biol. Chem. 259: 7056 (1984).PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Diana Marver
    • 1
  1. 1.Southwestern Medical SchoolUniversity of Texas Health Science CenterDallasUSA

Personalised recommendations