Skip to main content

The Erythrocyte Anion-Exchange Protein

Primary Structure Deduced from the cDNA Sequence and a Model for Its Arrangement within the Plasma Membrane

  • Chapter
New Insights into Cell and Membrane Transport Processes

Part of the book series: New Horizons in Therapeutics ((NHTH))

Overview

A full-length cDNA encoding the mouse erythrocyte anion-exchange protein band 3 has been isolated and sequenced. Homology between the amino acid sequence deduced from this cDNA and that of published fragments of human band 3 confirms its identity. A model of the topology of band 3 within the plasma membrane is proposed that is based on published biochemical data and the deduced amino acid sequence. Twelve hydrophobic and amphipathic regions in the anion-exchange domain are proposed to span the membrane as α-helices, resulting in both C and N termini in the interior of the cell. The possibility is considered that these transmembrane helices are organized to form two hydrophilic channels per band 3 monomer, which undergo conformational changes during the anion-exchange cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aviv, H., and Leder, P., 1972, Purification of biologically active globin messenger RNA by chromatography on oligothymidylic acid-cellulose, Proc. Natl. Acad. Sci. U.S.A. 69:1408–1412.

    Article  PubMed  CAS  Google Scholar 

  • Bennett, V., 1982, The molecular basis for membrane-cytoskeletal association in human erythrocytes, J. Cell Biochem. 18:49–65.

    Article  PubMed  CAS  Google Scholar 

  • Bennett, V., and Stenbuck, P. J., 1979, The membrane attachment protein for spectrin is associated with band 3 in human erythrocyte membranes. Nature 280:468–473.

    Article  PubMed  CAS  Google Scholar 

  • Bennett, V., and Stenbuck, P. J., 1980, Association between ankyrin and the cytoplasmic domain of band 3 isolated from the human erythrocyte membrane, J. Biol. Chem. 255:6424–6432.

    PubMed  CAS  Google Scholar 

  • Braell, W. A., 1981, Synthesis and Assembly of the Erythrocyte Anion Transport Protein, Ph.D. Dissertation, Massachusetts Institute of Technology, Cambridge, MA.

    Google Scholar 

  • Braell, W. A., and Lodish, H. F., 1981, Biosynthesis of the erythrocyte anion transport protein, J. Biol. Chem. 256:11337–11344.

    PubMed  CAS  Google Scholar 

  • Brock, C. J., Tanner, M. J. A., and Kempf, C., 1983, The human erythrocyte anion-transport protein. Partial amino acid sequence, conformation and a possible molecular mechanism for anion exchange, Biochem. J. 213:577–586.

    PubMed  CAS  Google Scholar 

  • Cabantchik, Z. I., Knauf, P. A., and Rothstein, A., 1978, The anion transport system of the red blood cell. The role of membrane protein evaluated by the use of “probes,” Biochem. Biophys. Acta 515:239–302.

    PubMed  CAS  Google Scholar 

  • Chirgwin, J. M., Przybyla, A. E., McDonald, R. J., and Rutter, W. J., 1979, Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease, Biochemistry 18:5294–5299.

    Article  PubMed  CAS  Google Scholar 

  • Dayhoff, M. O., Barker, W. C., and Hunt, T. L., 1983, Establishing homologies in protein sequences, Methods Enzymol. 91:524–545.

    Article  PubMed  CAS  Google Scholar 

  • Drickamer, L. K., 1976, Fragmentation of the 95,00-dalton transmembrane polypeptide in human erythrocyte membranes, J. Biol. Chem. 251:5115–5123.

    PubMed  CAS  Google Scholar 

  • Eisen, H., Bach, R., and Emery, R., 1977, Induction of spectrin in erythroleukemic cells transformed by Friend virus, Proc. Natl. Acad. U.S.A. 74:3898–3902.

    Article  CAS  Google Scholar 

  • Eisenberg, D., 1984, Three-dimensional structure of membrane and surface proteins, Annu. Rev. Biochem. 53:595–673.

    Article  PubMed  CAS  Google Scholar 

  • England, B. J., Gunn, R. B., and Steck, T. L., 1980, An immunological study of band 3, the anion transport protein of the human red blood cell membrane, Biochim Biophys. Acta 623:171–182.

    PubMed  CAS  Google Scholar 

  • Fairbanks, G., Steck, T. L., and Wallach, D. F. H., 1971, Electrophoretic analysis of the major polypeptides of the human erythrocyte membrane. Biochemistry 10:2606–2617.

    Article  PubMed  CAS  Google Scholar 

  • Finer-Moore, J., and Stroud, R. M., 1984, Amphipathic analysis and possible formation of the ion channel in an acetylcholine receptor, Proc. Natl. Acad. Sci. U.S.A. 81:155–159.

    Article  PubMed  CAS  Google Scholar 

  • Friend, C., Scher, W., Holland, J. G., and Sato, T., 1978, Hemoglobin synthesis in murine virus-induced leukemic cells in vitro.: Stimulation of erythroid differentiation by dimethyl sulfoxide, Proc. Natl. Acad. Sci. U.S.A. 68:378–382.

    Google Scholar 

  • Galvez, L. M., Jennings, M. L., and Tosteson, M. T., 1984, Incorporation of the DIDS-binding protein from the anion transport protein into bilayers. Fed. Proc. 43:315.

    Google Scholar 

  • Grinstein, S., Ship, S., and Rothstein, A., 1978, Anion transport in relation to proteolytic dissection of band 3 protein, Biochim. Biophys. Acta 507:294–304.

    Article  PubMed  CAS  Google Scholar 

  • Henderson, R., and Unwin, P. N. T., 1975, Three-dimensional model of purple membrane obtained by electron microscopy. Nature 257:28–32.

    Article  PubMed  CAS  Google Scholar 

  • Jennings, M. L., 1984, Oligomeric structure and the anion transport function of human erythrocyte band 3 protein, J. Membr. Biol. 80:105–117.

    Article  PubMed  CAS  Google Scholar 

  • Jennings, M. L., and Adams, M. F., 1981, Modification by papain of the structure and function of band 3, the erythrocyte anion transport protein. Biochemistry 20:7118–7123.

    Article  PubMed  CAS  Google Scholar 

  • Jennings, M. L., and Nicknish, J. S., 1984, Erythrocyte band 3 protein: Evidence for multiple membrane-crossing segments in the 1700-dalton chymotrypsin fragments, Biochemistry 23:6432–6436.

    Article  PubMed  CAS  Google Scholar 

  • Jennings, M. L., and Pasow, H., 1979, Anion transport across the erythrocyte membrane, in situ proteolysis of band 3 protein, and crosslinking of proteolytic fragments by 4,4′-diisothiocyano dihydrostilbene-2,2′-disulfonate, Biochim. Biophys. Acta 554:498–519.

    Article  PubMed  CAS  Google Scholar 

  • Jennings, M. L., Lackey, M. A., and Denney, D. H., 1984, Peptides of human erythrocyte band 3 protein. Protein produced by extracellular papain cleavage, J. Biol. Chem. 259:4652–4660.

    PubMed  CAS  Google Scholar 

  • Kaul, R. K., Murthy, P. S. N., Reddy, A. G., Steck, T. L., and Kohler, H., 1983, Amino acid sequence of the N alpha-terminal 201 residues of human erythrocyte membrane band 3, J. Biol. Chem. 258:7981–7990.

    PubMed  CAS  Google Scholar 

  • Khoma, H. G., Gerber, G. G., Herlihy, W. C., Gray, C. P., Anderess, R. J., Nihei, K., and Biemarin, K., 1979, Amino acid sequence of bacteriorhodopsin, Proc. Natl. Acad. Sci. U.S.A. 77:5046–5050.

    Google Scholar 

  • Knauf, P. A., 1979, Erythrocyte anion exchange and the band 3 protein: Transport kinetics and molecular structure, Curr. Top. Membr. Transport 912:249.

    Article  Google Scholar 

  • Kopito, R. R., and Lodish, H. F., 1985, Primary structure and transmembrane orientation of the murine anion transport protein. Nature 316:234–238.

    Article  PubMed  CAS  Google Scholar 

  • Kozak, M., 1981, Possible role of flanking nucleotides in recognition of the AUG initiator codon by eukaryotic ribosomes, Nucl. Acids Res. 9:5223–5262.

    Article  Google Scholar 

  • Kyte, J., and Doolittle, R. F., 1982, A simple method for displaying the hydropathic character of a protein, J. Mol. Biol. 157:105–132.

    Article  PubMed  CAS  Google Scholar 

  • Lemishka, I. R., Farmer, S., Rocaniello, V. R., and Sharp, P. A., 1981, Nucleotide sequence and evolution of a mammalian alpha-tubuUn messenger RNA, J. Mol. Biol. 151:101–120.

    Article  Google Scholar 

  • Low, P. S., Westfall, M. A., Allen, D. P., and Appell, K. C., 1984, Characterization of the reversible conformational equilibrium of the cytoplasmic domain of erythrocyte membrane band 3, J. Biol. Chem. 259:13070–13076.

    PubMed  CAS  Google Scholar 

  • Macara, L G., and Cantley, L. C., 1982, The structure and function of band 3, in: Cell Membranes, Methods and Reviews (E. Elson, W. Frazier, and L. Glaser, eds.). Plenum Press, New York, pp. 41–87.

    Google Scholar 

  • Maniatis, T., Fritsch, E. F., and Sambrook, J., 1982, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, New York.

    Google Scholar 

  • Marks, P. A., and Rifkind, R. A., 1978, Erythroleukemic differentiation, Annu. Rev. Biochem. 47:419–448.

    Article  PubMed  CAS  Google Scholar 

  • Mawby, W. J., and Findlay, J. B. C., 1983, Characterization and partial sequence of diiodosulphophenyl isothiocyanate-binding peptide from human erythrocyte anion-transport protein, Biochem. J. 205:465–475.

    Google Scholar 

  • Maxam, A., and Gilbert, W., 1980, Sequencing and end-labeled DNA with base-specific chemical cleavages. Methods Enzymol. 65:499–560.

    Article  PubMed  CAS  Google Scholar 

  • Patel, V. P., and Lodish, H. F., 1984, Loss of adhesion of murine erythroleukemia cells to fibronectin during erythroid differentiation, Science 224:996–998.

    Article  PubMed  CAS  Google Scholar 

  • Rao, A., 1979, Disposition of the band 3 polypeptide in the human erythrocyte membrane. The reactive sulfhydryl groups, J. Biol. Chem. 254:3503–3511.

    PubMed  CAS  Google Scholar 

  • Sabban, E. L., Sabatini, D. D., Marchesi, J. T., and Adesnik, M., 1980, Biosynthesis of erythrocyte membrane protein band 3 in DMSO-induced Friend erythroleukemia cells, J. Cell Physiol. 104:261–268.

    Article  PubMed  CAS  Google Scholar 

  • Sanger, F., Nicklen, S., and Coulson, A. R., 1977, DNA sequencing with chain-terminating inhibitors, Proc. Natl. Acad. Sci. 74:5463–5467.

    Article  PubMed  CAS  Google Scholar 

  • Schiffer, M., and Edmundson, A. B., 1967, Use of helical wheels to represent the structures of proteins and to identify segments with helical potential, Biophys. J. 7:121–135.

    Article  PubMed  CAS  Google Scholar 

  • Shaklai, N., Yguerabide, J., and Ranney, H. M., 1977, Classification and localization of hemoglobin binding sites on the red blood cell membrane, Biochemistry 16:5593–5597.

    Article  PubMed  CAS  Google Scholar 

  • Staden, R., 1982, Automation of the computer handling of gel reading data produced by the shotgun method of DNA sequencing, Nucl. Acids Res. 10:4731–4751.

    Article  PubMed  CAS  Google Scholar 

  • Steck, T. L., 1974, The organization of proteins in the human red blood cell membrane. A review, J. Cell Biol. 62:1–19.

    Article  PubMed  CAS  Google Scholar 

  • Steck, T. L., Ramos, B., and Strapazon, E., 1976, Proteolytic dissection of band 3, the predominant transmembrane polypeptide of the human erythrocyte membrane. Biochemistry 15:1153–1161.

    Article  PubMed  CAS  Google Scholar 

  • Strapazon, E., and Steck, T. L., 1976, Binding of rabbit muscle aldoslase to band 3, the predominant polypeptide of the human erythrocyte membrane. Biochemistry 15:1421–1424.

    Article  PubMed  CAS  Google Scholar 

  • Walder, J. A., Chatteijee, R., Steck, T. L., Low, P. S., Musso, G. F., Kaiser, E. T., Rogers, P. H., and Arnone, A., 1984, The interaction of hemoglobin with the cytoplasmic domain of band 3 of the human erythrocyte membrane, J. Biol. Chem. 259:10238–10246.

    PubMed  CAS  Google Scholar 

  • Wieth, J. O., and Brahm, J., 1985, Cellular anion transport, in: The Kidney: Physiology and Pathophysiology (G. Giebisch, and D. W. Seldin, eds.). Raven Press, New York, pp. 48–89.

    Google Scholar 

  • Wieth, J. O., Anderson, O. S., Brahm, J., Bjerrum, P. J., and Borders, C. L., 1982a, Chloride-bicarbonate exchange in red blood cells: Physiology of transport and chemical modification of binding sites, Phil. Trans. R. Soc. Lond. B299:383–399.

    Google Scholar 

  • Wieth, J. O., Bierrum, P. J., and Borders, C. L., Jr., 1982b, Irreversible inactivation of red cell chloride-exchange with phenylglycoxal, an arginine-specific reagent, J. Gen. Physiol. 79:283–312.

    Article  PubMed  CAS  Google Scholar 

  • Young, R. A., and Davis, R. W., 1983, Efficient isolation of genes by using antibody probes, Proc. Natl. Acad. Sci. U.S.A. 80:1194–1198.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Plenum Press, New York

About this chapter

Cite this chapter

Kopito, R.R., Lodish, H.F. (1986). The Erythrocyte Anion-Exchange Protein. In: Poste, G., Crooke, S.T. (eds) New Insights into Cell and Membrane Transport Processes. New Horizons in Therapeutics. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5062-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5062-0_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5064-4

  • Online ISBN: 978-1-4684-5062-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics