Skip to main content

Part of the book series: New Horizons in Therapeutics ((NHTH))

  • 56 Accesses

Abstract

The protein toxins produced by plants and bacteria are extraordinarily powerful: those of cholera, diphtheria, tetanus, and botulism are responsible for diseases that still kill many thousands of people every year, especially in the Third World. From the point of view of the biologist, their chief interest lies in their high activity: a single molecule of diphtheria toxin will kill a cell. Only hormones have comparable biological activity, and they are products of the organism that they affect; the toxins are produced by alien procaryotes, yet they can profoundly affect eucaryotic life. In this chapter, I give an outline of the properties of some of these proteins, emphasizing the way in which they manage to cross the membrane of the intoxicated cell to arrive at their intracellular target. It must be remembered that they face a double problem: they must first be secreted across the membrane of the cell in which they were synthesized before they can reach another cell. For two useful and recent general reviews, see Eidels et al. (1983) and Middlebrook and Dorner (1984).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Boquet, P., and Duflot, E., 1982, Tetanus toxin fragment forms channels in lipid vesicles at low pH, Proc. Natl Acad. Sci. U.S.A. 79:7614–7618.

    Article  PubMed  CAS  Google Scholar 

  • Boquet, P., and Pappenheimer, A. M., 1976, Interaction of diphtheria toxin with mammalian cell membranes, J. Biol. Chem. 251:5770–5778.

    PubMed  CAS  Google Scholar 

  • Boquet, P., Duflot, E., and Hauttecoeur, B., 1984, Low pH induces a hydrophobic domain in the tetanus toxin molecule, Eur. J. Biochem. 144:339–344.

    Article  PubMed  CAS  Google Scholar 

  • Collier, R. J., 1975, Diphtheria toxin: Mode of action and structure, Bacteriol. Rev. 39:54–85.

    PubMed  CAS  Google Scholar 

  • Craig, S. W., and Cuatrecasas, P., 1975, Mobility of cholera toxin receptors on rat lymphocyte membranes, Proe. Natl. Aead. Sci. U.S.A. 72:3844–3848.

    Article  CAS  Google Scholar 

  • Critchley, D. R., Ansell, S., Perkins, R., Dilks, S., and Ingram, J., 1979, Isolation of cholera toxin receptors from a mouse fibroblast and lymphoid cell line by immune precipitation, J. Supramol. Struet. 12:273–291.

    Article  CAS  Google Scholar 

  • Dalziel, A. W., Lipka, G., Chowdry, B. Z., Sturtevant, J. M., and Schäfer, D. E., 1984, Effects of ganglioside GMl on the thermotropic behaviour of cholera toxin B subunit, Mol. Cell. Bioehem. 63:83–91.

    CAS  Google Scholar 

  • De Wolf, M. J. S., Fridkin, M., and Kohn, L. D., 1981, Tryptophan residues of cholera toxin and its A and B promoters, J. Biol. Chem. 256:5489–5496.

    PubMed  Google Scholar 

  • Donovan, J. J., Simon, M. I., Draper, R. K., and Montal, M., 1981, Diphtheria toxin forms transmembrane channels in planar lipid bilayers, Proc. Natl. Acad. Sci. U.S.A. 78:172–176.

    Article  PubMed  CAS  Google Scholar 

  • Draper, R. K., and Simon, M. I., 1980, The entry of diphtheria toxin into the mammalian cell cytoplasm: Evidence for lysosomal involvement, J. Cell Biol. 87:849–854.

    Article  PubMed  CAS  Google Scholar 

  • Draper, R. K., O’Keefe, D. O., Stookey, M., and Graves, J., 1984, Identification of a cold-sensitive step in the mechanism of modeccin action, J. Biol. Chem. 259:4083–4088.

    PubMed  CAS  Google Scholar 

  • Dwyer, J. D., and Bloomfield, V. A., 1982, Subunit arrangement of cholera toxin in solution and bound to receptor-containing model membranes. Biochemistry 21:3227–3231.

    Article  PubMed  CAS  Google Scholar 

  • Eidels, L., Proia, R. L., and Hart, D. A., 1983, Membrane receptors for bacterial toxins, Microbiol. Rev. 47:596–620.

    PubMed  CAS  Google Scholar 

  • Falmagne, P., Capiau, C., Lambotte, P., Zanen, J., Cabiaux, V., and Ruysschaert, J.-M., 1985, The complete amino acid sequence of diphtheria toxin fragment B. Correlation with its lipid-binding properties, Biochim. Biophys. Acta 827:45–50.

    Article  PubMed  CAS  Google Scholar 

  • Filipovich, A. H., Vallera, D. A., Youle, R. J., Quinones, R. R., Neville, D. M., Jr., and Kersey, J. H., 1984, Ex-vivo treatment of donor bone marrow with anti-T-cell immunotoxins for prevention of graft-versus-host disease, Lancet 1:469–472.

    Article  PubMed  CAS  Google Scholar 

  • Fishman, P. H., 1980, Mechanism of action of cholera toxin: Studies on the lag period, J. Memb. Biol. 54:61–72.

    Article  CAS  Google Scholar 

  • Fishman, P. H., and Atikkan, E. E., 1979, Induction of cholera toxin receptors in cultured cells by butyric acid, J. Biol. Chem. 254:4342–4344.

    PubMed  CAS  Google Scholar 

  • Fitzgerald, D., Morris, R. E., and Saelinger, C. B., 1989, Receptor-mediated internationalization of Pseudomonas toxin by mouse fibroblasts, Cell 21:867–873.

    Article  Google Scholar 

  • Gill, D. M., 1978, Seven toxic peptides that cross cell membranes, in: Bacterial Toxins and Cell Membranes (J. Jeljaszewicz and T. Wadstrom, eds.), Academic Press, New York, pp. 291–332.

    Google Scholar 

  • Habermann, E., 1981, Tetanus toxin and botulinum A neurotoxin inhibit and at higher concentrations enhance noradrenaline outflow from particulate brain cortex in batch, Naunyn Schmiedebergs Arch. Pharmacol. 318:105–111.

    PubMed  CAS  Google Scholar 

  • Hagmann, J., and Fishman, P. H., 1981, Inhibitors of protein synthesis block action of cholera toxin, Biochem. Biophys. Res. Commun. 98:677–684.

    Article  PubMed  CAS  Google Scholar 

  • Herschman, H. R., 1984, The role of binding ligand in toxic hybrid proteins: A comparison of EGF-ricin, EGF-ricin A-chain, and ricin, Biochem. Biophys. Res. Commun. 124:551–557.

    Article  PubMed  CAS  Google Scholar 

  • Houslay, M. D., and Elliott, K. R. F., 1979, Cholera toxin mediated activation of adenylate cyclase in intact rat hepatocytes, FEBS Lett. 104:359–363.

    Article  PubMed  CAS  Google Scholar 

  • Houston, L. L., 1982, Transport of ricin A chain after prior treatment of mouse leukemia cells with ricin B chain, J. Biol. Chem. 257:1532–1539.

    PubMed  CAS  Google Scholar 

  • Hu, V. W., and Holmes, R. K., 1984, Evidence for direct insertion of fragments A and B of diphtheria toxin into model membranes, J. Biol. Chem. 259:12226–12233.

    PubMed  CAS  Google Scholar 

  • Ishida, B., Cawley, D. B., Reue, K., and Wisnieski, B. J., 1983, Lipid-protein interactions during ricin toxin insertion into membranes, J. Biol. Chem. 258:5933–5937.

    PubMed  CAS  Google Scholar 

  • Joseph, K. C., Kim, S. U., Steiber, A., and Gonatas, N. K., 1978, Endocytosis of cholera toxin into neuronal GERL, Proc. Natl. Acad. Sci. U.S.A. 75:2815–2819.

    Article  PubMed  CAS  Google Scholar 

  • Kagan, B. L., Finkelstein, A., and Colombini, M., 1981, Diphtheria toxin fragment forms large pores in phosphoHpid bilayer membranes, Proc. Natl. Acad. Sci. U.S.A. 78:4950–4954.

    Article  PubMed  CAS  Google Scholar 

  • Kaneda, Y., Uchida, T., Mekada, E., Nakanishi, M., and Okada, Y., 1984, Entry of diphtheria toxin into cells: Possible existence of cellular factor(s) for entry of diphtheria toxin into cells was studied in somatic cell hybrids and hybrid toxins, J. Cell. Biol. 98:466–472.

    Article  PubMed  CAS  Google Scholar 

  • Kassis, S., Hagmann, J., Fishman, P. E., Chang, P. P., and Moss, J., 1982, Mechanism of action of cholera toxin on intact cells: Generation of Al peptide and activation of adenylate cyclase, J. Biol. Chem. 257:12148–12152.

    PubMed  CAS  Google Scholar 

  • Kayser, G., Lambotte, P., Falmagne, P., Capiau, C., Zanen, J., and Ruysschaert, J.-M., 1981, A CNBr peptide located in the middle region of diphtheria toxin fragment B induces conductance change in lipid bilayers, Biochem. Biophys. Res. Commun. 99:358–363.

    Article  PubMed  CAS  Google Scholar 

  • Kim, K., and Groman, N. B., 1956, Mode of inhibition of diphtheria toxin by ammonium chloride, J. Bacteriol. 90:1557–1562.

    Google Scholar 

  • Lai, C.-Y., 1980, The chemistry and biology of cholera toxin, CRC Crit. Rev. Biochem. 9:171–206.

    Article  PubMed  CAS  Google Scholar 

  • Lai, C.-Y., Cancedda, F., and Duffy, L. K., 1981, ADP-ribosyl transferase activity of cholera toxin polypeptide Al and the effect of limited trypsinolysis, Biochem. Biophys. Res. Commun. 102:1021–1027.

    Article  PubMed  CAS  Google Scholar 

  • Leppla, S. H., 1982, Anthrax toxin edema factor: A bacterial adenylate cyclase that increases cyclic AMP concentrations in eukaryotic cells, Proc. Natl. Acad. Sci. U.S.A. 79:3162–3166.

    Article  PubMed  CAS  Google Scholar 

  • Mannhalter, J. W., Gilliland, D. G., and Collier, R. J., 1980, A hybrid toxin containing fragment A from diphtheria toxin linked to the B protomer of cholera toxin, Biochim. Biophys. Acta 626:443–450.

    PubMed  CAS  Google Scholar 

  • Marnell, M. H., Shia, S.-P., Stookey, M., and Draper, R. D., 1984, Evidence for penetration of diphtheria toxin to the cytosol through a prelysosomal membrane, Infect. Immun. 44:145–150.

    PubMed  CAS  Google Scholar 

  • Matuo, Y., Wheeler, M. A., and Bitensky, M. W., 1976, Small fragments from the A subunit of cholera toxin capable of activating adenylate cyclase, Proc. Natl. Acad. Sci. U.S.A. 73:2654–2658.

    Article  PubMed  CAS  Google Scholar 

  • Mellanby, J., and Green, J., 1981, How does tetanus toxin act? Neuroscience 6:281–300.

    Article  PubMed  CAS  Google Scholar 

  • Merion, M., Schlesinger, P., Brooks, R. M., Moehring, J. M., Moehring, T. J., and Sly, W. S., 1983, Defective acidification of endosomes in Chinese hamster ovary cell mutants “cross-resistant” to toxins and viruses, Proc. Natl. Acad. Sci. U.S.A. 80:5315–5319.

    Article  PubMed  CAS  Google Scholar 

  • Middlebrook, J. L., and Dorland, R. B., 1984, Bacterial toxins: Cellular mechanisms of action, Microbiol. Rev. 48:199–221.

    PubMed  CAS  Google Scholar 

  • Moss, J., Fishman, P. H., Manganiello, V. A., Vaughan, M., and Brady, R. O., 1976, Functional incorporation of ganglioside into intact cells: Induction of choleragen responsiveness, Proc. Natl. Acad. Sci. U.S.A. 73:1034–1037.

    Article  PubMed  CAS  Google Scholar 

  • Moss, J., Richards, R. L., Alving, C. R., and Fishman, P. H., 1977, Effect of the A and B protomers of choleragen on release of trapped glucose from liposomes containing or lacking ganglioside GM1, J. Biol. Chem. 252:797–798.

    PubMed  CAS  Google Scholar 

  • Moss, J., Stanley, S. J., Morin, J. E., and Dixon, J. E., 1980, Activation of choleragen by thiol:protein disulfide oxidoreductase, J. Biol. Chem. 255:11085–11087.

    PubMed  CAS  Google Scholar 

  • Mullin, B. R., Fishman, P. H., Lee, G., Aloj, S. M., Ledley, F. D., Winand, R. J., Kohn, L. D., and Brady, R. O., 1976, Thyrotropin-gangHoside interactions and their relationship to the structure and function of thyrotropin receptors, Proc. Natl. Acad. Sci. U.S.A. 73:842–846.

    Article  PubMed  CAS  Google Scholar 

  • O’Brien, A. D., LaVeck, G. D., Griffin, D. E., and Thompson, M. R., 1980, Characterization of Shigella dysenteriae 1 (Shiga) toxin purified by anti-Shiga toxin affinity chromatography, Infect. Immun. 30:170–179.

    PubMed  Google Scholar 

  • Olsnes, S., and Pihl, A., 1982, Toxic lectins and related proteins, in The Molecular Action of Toxins and Viruses (P. Cohen and S. van Heyningen, eds.), Elsevier, Amsterdam, pp. 51–105.

    Google Scholar 

  • Olsnes, S., Reisbig, R., and Eiklid, K., 1981, Subunit structure of Shigella cytotoxin, J.Biol. Chem. 256:8732–8738.

    PubMed  CAS  Google Scholar 

  • Olsnes, S., Sandvig, K., Madshus, I. H., and Sundan, A., 1985, Entry mechanisms of protein toxins and picrornaviruses, Biochem. Soc. Symp. 50:171–191.

    PubMed  CAS  Google Scholar 

  • Proia, R. L., Eidels, L., and Hart, D. A., 1981, Diphtheria toxin: Receptor interaction, J. Biol. Chem. 256:4991–4997.

    PubMed  CAS  Google Scholar 

  • Revesz, T., and Greaves, M., 1975, Ligand-induced redistribution of lymphocyte membrane ganglioside GMl, Nature 257:103–106.

    Article  PubMed  CAS  Google Scholar 

  • Rodgers, T. B., and Snyder, S. H., 1981, High affinity binding of tetanus toxin to mammalian brain membranes, J. Biol. Chem. 256:2402–2407.

    Google Scholar 

  • Sandvig, K., and Olsnes, S., 1981, Rapid entry of nicked diphtheria toxin into cells at low pH. Characterization of the entry process and effect of low pH on the toxin molecule, J. Biol. Chem. 256:9068–9076.

    PubMed  CAS  Google Scholar 

  • Sandvig, K., Olsnes, S., and Pihl, A., 1979, Inhibitory effect of ammonium chloride and chloroquine on the entry of the toxic lectin modeccin into HeLa cells, Biochem. Biophys. Res. Commun. 90:648–655.

    Article  PubMed  CAS  Google Scholar 

  • Sandvig, K., Sundan, A., and Olsnes, S., 1984, Evidence that diphtheria toxin and modeccin enter the cytosol from different vesicular compartments, J. Cell Biol. 98:963–970.

    Article  PubMed  CAS  Google Scholar 

  • Sillerud, L. O., Prestegard, J. H., Yu, R. K., Königsberg, W. H., and Schäfer, D. E., 1981, Observation by 13C NMR of interactions between cholera toxin and the oligosaccharide of ganglioside GMl, J. Biol. Chem. 256:1094–1097.

    PubMed  CAS  Google Scholar 

  • Simpson, L. L., 1984a, Botulinum toxin and tetanus toxin recognize similar membrane determinants. Brain Res. 305:177–180.

    Article  PubMed  CAS  Google Scholar 

  • Simpson, L. L., 1984b, The binding fragment from tetanus toxin antagonizes the neuromuscular blocking actions of botulinum toxin, J. Pharmacol. Exp. Ther. 229:182–187.

    PubMed  CAS  Google Scholar 

  • Stirpe, F., Sandvig, K., Olsnes, S., and Pihl, A., 1982, Action of viscumin, a toxic lectin from mistletoe, on cells in culture, J. Biol. Chem. 257:13271–13277.

    PubMed  CAS  Google Scholar 

  • Sugiyama, H., 1980, Clostridium botulinum neurotoxin, Microbiol. Rev. 44:419–448.

    CAS  Google Scholar 

  • Tamura, M., Nogimori, K., Murai, S., Yajima, M., Ito, K., Katada, T., Ui, M., and Ishii, S., 1982, Subunit structure of islet-activating protein, pertussis toxin, in conformity with the A-B model. Biochemistry 21:5516–5522.

    Article  PubMed  CAS  Google Scholar 

  • Thorpe, P. E., and Ross, W. C. J., 1982, The preparation and cytotoxic properties of antibody-toxin conjugates, Immunol. Rev. 62:119–158.

    Article  PubMed  CAS  Google Scholar 

  • Tosteson, M. T., Tosteson, D. C., and Rubnitz, J., 1980, Cholera toxin interactions with lipid bilayers. Acta Physiol. Scand. [Suppl.] 481:21–25.

    CAS  Google Scholar 

  • Tsuru, S., Matsuguchi, M., Watanabe, M., Taniguchi, M., and Zinnaka, Y., 1984, Entrance of cholera enterotoxin subunits into thymus cells, J. Histochem. Cytochem. 32:1257–1279.

    Google Scholar 

  • Uchida, T., 1982, Diphtheria toxin, in: Molecular Action of Toxins and Viruses (P. Cohen and S. van Heyningen, eds.), Elsevier, Amsterdam, pp. 1–31.

    Google Scholar 

  • van Heyningen, S., 1977, Activity of covalently cross-Hnked cholera toxin with the adenylate cyclase of intact and lysed pigeon erythrocytes, Biochem. J. 168:457–463.

    PubMed  Google Scholar 

  • van Heyningen, S., 1980, Tetanus toxin, Pharmacol. Ther. 11:141–157.

    Google Scholar 

  • van Heyningen, S., 1982a, Similarities in the action of different toxins, in: Molecular Action of Toxins and Viruses (P. Cohen and S. van Heyningen, eds.), Elsevier, Amsterdam, pp. 169–190.

    Google Scholar 

  • van Heyningen, S., 1982b, Cholera toxin, Biosci. Rep. 2:135–146.

    Google Scholar 

  • van Heyningen, S., 1982c, Conformational changes in subunit A of cholera toxin following the binding of ganglioside to subunit B, Eur. J. Biochem. 122:333–337.

    Article  PubMed  Google Scholar 

  • van Heyningen, S., 1938a, The interaction of cholera toxin with gangliosides and the cell membrane. Current Top. Membr. Transport. 18:445–470.

    Article  Google Scholar 

  • van Heyningen, S., 1983b, A conjugate of the Al peptide of cholera toxin and the lectin of Wisteria floribunda that activates the adenylate cyclase of intact cells, FEBS Lett. 164:132–134.

    Article  PubMed  Google Scholar 

  • van Heyningen, S., 1984, Cholera and related toxins, in: Molecular Medicine, Vol. I (A. D. B. Malcolm, ed.), IRL Press, Oxford, pp. 1–15.

    Google Scholar 

  • van Heyningen, S., and King, C. A., 1975, Subunit A from cholera toxin is an activator of adenylate cyclase in pigeon erythrocytes, Biochem. J. 146:269–271.

    PubMed  Google Scholar 

  • van Heyningen, S., and Tait, R. M., 1980, Cholera toxin: Structure and function, in: Hormones and Cell Regulation, Vol. 4 (J. Dumont and J. Nunez, eds.), Elsevier, Amsterdam, pp. 293–309.

    Google Scholar 

  • van Heyningen, W. E., 1974, Gangliosides as membrane receptors for tetanus toxin, cholera toxin, and serotonin. Nature 249:415–417.

    Article  Google Scholar 

  • Vasil, M. L., Kabat, D., and Iglewski, B. H., 1977, Structure-activity relationships of an exotoxin of Pseudomonas aeruginosa, Infect. Immun. 16:353–361.

    CAS  Google Scholar 

  • Ward, W. H. J., Britton, P., and van Heyningen, S., 1981, The hydrophobicities of cholera toxin, tetanus toxin and their components, Biochem. J. 199:457–460.

    PubMed  CAS  Google Scholar 

  • Wardlaw, A. C., and Parton, R., 1983, Bordetella pertussis toxins, Pharmacol. Ther. 19:1–53.

    CAS  Google Scholar 

  • Willingham, M. C., and Pastan, I., 1984, Endocytosis and exocytosis: Current concepts of vesicle traffic in animal cells, Int. Rev. Cytol. 92:51–92.

    Article  PubMed  CAS  Google Scholar 

  • Wisnieski, B. J., and Bramhall, J. S., 1981, Photolabelling of cholera toxin subunits during membrane penetration, Nature 289:319–321.

    Article  PubMed  CAS  Google Scholar 

  • Yavin, E., and Habig, W. H., 1984, Binding of tetanus toxin to somatic neural hybrid cells with varying ganglioside composition, J. Neurochem. 42:1313–1320.

    Article  PubMed  CAS  Google Scholar 

  • Yavin, Z., Yavin, E., and Kohn, L. D., 1982, Sequestration of tetanus toxin in developing neuronal cell cultures, J. Neurosci. Res. 7:267–278.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Plenum Press, New York

About this chapter

Cite this chapter

Van Heyningen, S. (1986). Transport of Protein Toxins Across Cell Membranes. In: Poste, G., Crooke, S.T. (eds) New Insights into Cell and Membrane Transport Processes. New Horizons in Therapeutics. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5062-0_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5062-0_21

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5064-4

  • Online ISBN: 978-1-4684-5062-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics