Skip to main content

Analysis of Epithelial Cell Surface Polarity Development with Monoclonal Antibodies

  • Chapter
New Insights into Cell and Membrane Transport Processes

Part of the book series: New Horizons in Therapeutics ((NHTH))

  • 55 Accesses

Abstract

The cells of transporting epithelia are organized into either sheets or tubules so that they provide a barrier between two compartments, the mucosal and serosal, which are essential for the proper physiological functioning of a variety of organs and tissues. The plasma membrane of epithelial cells is divided into two unique domains: the apical membrane, which borders the mucosal or luminal side, and the basolateral membrane, which contacts the basal lamina on the serosal side of the epithelium (Berridge and Oschman, 1972). At the boundary between the apical and basolateral domains is a differentiated region of the plasma membrane termed the junctional complex (Farquhar and Palade, 1963), and one of these membrane specializations, the tight junction, seals the lateral space, preventing the transepithelial movement of ions and larger molecules (Farquhar and Palade, 1963; Staehelin, 1974).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Berridge, M. J., and Oschman, J. L., 1972, Transporting Epithelia, Academic Press, New York.

    Google Scholar 

  • Blobel, G., Walter, P., Chung, C. N., Goldman, B. M., Erickson, A. H., and Lingappa, V. R., 1979, Translocation of proteins across membranes: The signal hypothesis and beyond, Symp. Soc. Exp, Biol. 33:9–36.

    CAS  Google Scholar 

  • Cereijido, M., Robbins, E. S., Dolan, W. J., Rotunno, C. A., and Sabatini, D. D., 1978, Polarized monolayers formed by epithelial cells on a permeable and translucent support, J. Cell Biol. 77:853–880.

    Article  PubMed  CAS  Google Scholar 

  • Cereijido, M., Ehrenfeld, J., Meza, I., and Martinez-Palomo, A., 1980, Structural and functional membrane polarity in cultured monolayers of MDCK cells, J. Membr. Biol. 52:147–159.

    Article  PubMed  CAS  Google Scholar 

  • Cramer, E. B., Milks, L. C., and Ojakian, G. K., 1980, Transepithelial migration of human neutrophils: An in vitro model system, Proc. Natl. Acad. Sci. U.S.A. 77:4069–4073.

    Article  PubMed  CAS  Google Scholar 

  • Ernst, S. A., and Mills, J. W., 1977, Basolateral plasma membrane locaHzation of ouabain-sensitive sodium transport sites in the secretory epithelium of the avian salt gland, J. Cell. Biol. 75:74–94.

    Article  PubMed  CAS  Google Scholar 

  • Farquhar, M. G., and Palade, G. E., 1963, Junctional complexes in various epithelia, J. Cell Biol. 17:375–412.

    Article  PubMed  CAS  Google Scholar 

  • Fujita, M., Kawai, K., Asano, K., and Nakao, M., 1973, Protein components of two different regions of an intestinal epithelial cell membrane, Biochim. Biophys. Acta 307:141–151.

    Article  PubMed  CAS  Google Scholar 

  • Gefter, M. L., Margulies, D. H., and Scharff, M. D., 1977, A simple method for polyethylene glycol-promoted hybridization of mouse myeloma cells, Somat. Cell Genet. 3:231–236.

    Article  PubMed  CAS  Google Scholar 

  • Handler, J. S., Perkins, F. M., and Johnson, J. P., 1980, Studies of renal cell function using cell culture techniques. Am. J. Physiol. 238:F1-F9.

    PubMed  CAS  Google Scholar 

  • Herzlinger, D. A., and Ojakian, G. K., 1984, Studies on the development and maintenance of epithehal cell surface polarity with monoclonal antibodies, J. Cell Biol. 98:1777–1787.

    Article  PubMed  CAS  Google Scholar 

  • Herzlinger, D. A., Easton, T. G., and Ojakian, G. K., 1982, The MDCK epithelial cell line expresses a cell surface antigen of the kidney distal tubule, J. Cell Biol. 93:269–277.

    Article  PubMed  CAS  Google Scholar 

  • Hoisang, U., Saier, M. H., Jr., and Ellisman, M. H., 1979, Tight junction formation is closely linked to the polar redistribution of intramembranous particles in aggregating MDCK epithelia, Exp. Cell Res. 122:384–391.

    Article  CAS  Google Scholar 

  • Kawai, K., Fujita, M., and Nakao, M., 1974, Lipid components of two different regions of an intestinal epithelial cell membrane of mouse, Biochim. Biophys. Acta 369:222–233.

    PubMed  CAS  Google Scholar 

  • Köhler, G., and Milstein, C., 1975, Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256:495–497.

    Article  PubMed  Google Scholar 

  • Kyte, J., 1976, Immunoferritin determination of the distribution of (Na+ + K+) ATPase over the plasma membranes of renal convoluted tubules. I. Distal segment, J. Cell Biol. 68:287–303.

    Article  PubMed  CAS  Google Scholar 

  • Lamb, J. F., Ogden, P., and Simmons, N. L., 1981, Autoradiographic localization of [3H]ouabain bound to cultured epithelial cell monolayers of MDCK cells, Biochim. Biophys. Acta 644:333–340.

    Article  PubMed  CAS  Google Scholar 

  • Langone, J. J., 1982, Use of labeled protein A in quantitative immunochemical analysis of antigens and antibodies, J. Immunol. Methods 51:3–22.

    Article  PubMed  CAS  Google Scholar 

  • Leighton, J., Estes, L. W., Mansukhani, S., and Brada, Z., 1970, A cell line derived from dog kidney (MDCK) exhibiting qualities of papillary adenocarcinoma and of renal tubular epithelium, Cancer 26:1022–1028.

    Article  PubMed  CAS  Google Scholar 

  • Louvard, D., 1980, Apical membrane aminopeptidase appears at sites of cell-cell contact in cultured kidney epithelial cells, Proc. Natl. Acad. Sci. U.S.A. 77:4132–4136.

    Article  PubMed  CAS  Google Scholar 

  • Matlin, K., and Simons, K., 1984, Sorting of an apical plasma membrane glycoprotein occurs before it reaches the cell surface in cultured epithelial cells, J. Cell Biol. 99:2131–2139.

    Article  PubMed  CAS  Google Scholar 

  • Matlin, K. S., Bainton, D. F., Personen, M., Louvard, D., Gentry, N., and Simons, K., 1983, Transepithelial transport of a viral membrane glycoprotein implanted into the apical plasma membrane of Madin-Darby canine kidney cells. I. Morphological evidence, J. Cell Biol. 97:627–637.

    Article  PubMed  CAS  Google Scholar 

  • Meldolesi, J., Castiglioni, G., Parma, R., Nassivera, N., and DeCamilli, P., 1978, dependent disassembly and reassembly of occluding junctions in guinea pig pancreatic acinar cells: Effect of drugs, J. Cell Biol. 79:156–172.

    Article  PubMed  CAS  Google Scholar 

  • Misfeldt, D. S., Hamamoto, S. T., and Pitelka, D. R., 1976, Transepithelial transport in cell culture, Proc. Nat. Acad. Sci. U.S.A. 73:1212–1216.

    Article  CAS  Google Scholar 

  • Morel, F., 1981, Sites of hormone action in the mammalian nephron. Am. J. Physiol. 240:F159-F164.

    PubMed  CAS  Google Scholar 

  • Mühlpfordt, H., 1982, The preparation of colloidal gold particles using tannic acid as an additional reducing agent, Experientia 38:1127–1128.

    Article  Google Scholar 

  • Murer, H., and Kinne, R., 1980, The use of isolated membrane vesicles to study epithelial transport processes, J. Membr. Biol. 55:81–95.

    Article  PubMed  CAS  Google Scholar 

  • Ojakian, G. K., 1981, Tumor promoter-induced changes in the permeability of epithelial cell tight junctions. Cell 23:95–103.

    Article  PubMed  CAS  Google Scholar 

  • Ojakian, G. K., and Herzlinger, D. A., 1984, Analysis of epithelial cell surface polarity with monoclonal antibodies. Fed. Proc. 43:2208–2216.

    PubMed  CAS  Google Scholar 

  • Personen, M., and Simons, K., 1983, Transepithelial transport of a viral membrane glycoprotein implanted into the apical plasma membrane of Madin-Darby canine kidney cells. II. Immunological evidence, J. Cell Biol. 97:638–643.

    Article  Google Scholar 

  • Pisam, M., and Ripoche, P., 1976, Redistribution of surface macromolecules in dissociated epithelial cells, J. Cell Biol. 71:907–920.

    Article  PubMed  CAS  Google Scholar 

  • Rabito, C. A., and Tchao, R., 1980, [3H]ouabain binding during the monolayer organization and cell cycle in MDCK cells, Am. J. Physiol. 238:C43-C48.

    PubMed  CAS  Google Scholar 

  • Rabito, C. A., Tchao, T., Valentich, J., and Leighton, J., 1978, Distribution and characteristics of the occluding junctions in a monolayer of a cell line (MDCK) derived from canine kidney, J. Membr. Biol. 43:351–365.

    Article  PubMed  CAS  Google Scholar 

  • Rabito, C. A. Kreisberg, J. I., and Wight, D., 1984, Alkaline phosphatase and γ-glutamyl transpeptidase as polarization markers during the organization of LLC-PK1 cells into an epithelial membrane, J. Biol. Chem. 259:574–582.

    PubMed  CAS  Google Scholar 

  • Reggio, H., Courdrier, E., and Louvard, D., 1982, Surface and cytoplasmic domains in polarized epithelial cells, in: Progress in Clinical and Biological Research Vol. 91 (J. F. Hoffman, G. H. Giebisch, L. Doris, eds.) Alan R. Liss, New York, pp. 89–105.

    Google Scholar 

  • Richardson, J. C., and Simmons, N. L., 1979, Demonstration of protein asymmetries in the plasma membrane of cultured renal (MDCK) epithelial cells by lactoperoxidase-mediated iodination, FEBS Lett. 105:201–204.

    Article  PubMed  CAS  Google Scholar 

  • Richardson, J. C. W., Scalera, V., and Simmons, N. L., 1981, Identification of two strains of MDCK cells which resemble separate nephron tubule segments, Biochim. Biophys. Acta 673:26–36.

    Article  PubMed  CAS  Google Scholar 

  • Rindler, M. J., Chuman, L. M., Shaffer, L., and Saier, M. H., Jr., 1979, Retention of differentiated properties in an established dog kidney epithelial cell line (MDCK), J. Cell Biol. 81:635–648.

    Article  PubMed  CAS  Google Scholar 

  • Rindler, M. J., Ivanov, I. E., Rodriguez-Boulan, E., and Sabatini, D. D., 1982, Biogenesis of epithelial cell plasma membranes, Ciba Found. Symp. 92:184–208.

    PubMed  Google Scholar 

  • Rindler, M. J., Ivanov, I. E., Plesken, H., and Sabatini, D. D., 1985, Polarized delivery of viral glycoproteins to the apical and basolateral plasma membrane of Madin-Darby canine kidney cells infected with temperature-sensitive viruses, J. Cell Biol. 100:136–151.

    Article  PubMed  CAS  Google Scholar 

  • Rodewald, R., 1980, Distribution of immunoglobulin G receptors in the small intestine of the young rat, J. Cell Biol. 85:18–32.

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez-Boulan, E., 1983, Membrane biogenesis, enveloped RNA viruses, and epithelial polarity, in:Modern Cell Biology, Vol. 1 (B. Satir, ed.) Alan R. Liss, New York, pp. 119–170.

    Google Scholar 

  • Rodriguez-Boulan, E., and Pendergast, M., 1980, Polarized distribution of viral envelope proteins in the plasma membrane of infected epithelial cells. Cell 20:45–54.

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez-Boulan, E., and Sabatini, D. D., 1978, Asymmetric budding of viruses in epithelial monolayers: A model system for study of epithelial polarity, Proc. Natl. Acad. Sci. U.S.A. 75:5071–5075.

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez-Boulan, E., Paskiet, K. T., Salas, P. J. I., and Bard, E., 1984, Intracellular transport of influenza virus hemagglutinin to the apical surface of Madin-Darby canine kidney cells, J. Cell Biol. 98:308–319.

    Article  PubMed  CAS  Google Scholar 

  • Roth, M. G., Compans, R. W., Giusti, L., Davis, A. R., Nayak, D. P., Gething, M. J., and Sambrook, J., 1983, Influenza virus hemagglutinin expression is polarized in cells infected with recombinant SV40 viruses carrying cloned hemagglutinin DNA, Cell 33:435–443.

    Article  PubMed  CAS  Google Scholar 

  • Semenza, G., 1979, Small intestinal disaccharidases: Their properties and role as sugar translocators across natural and artificial membranes, in: The Enzymes of Biological Membranes, Vol. 3 (A. Martonosi, ed.), Plenum Press, New York, pp. 349–382.

    Google Scholar 

  • Singer, S. J., and Nicolson, G. L., 1972, The fluid mosaic model of the structure of cell membranes, Science 175:720–731.

    Article  PubMed  CAS  Google Scholar 

  • Sisson, S. P., and Vernier, R. L., 1980, Methods for immunoelectron microscopy: Localization of antigens in rat kidney, J. Histochem. Cytoehem. 28:441–452.

    Article  CAS  Google Scholar 

  • Solari, R., and Kraehenbuhl, J.-P., 1984, Biosynthesis of the IgA antibody receptor: A model for the transepithehal sorting of a membrane glycoprotein. Cell 36:61–71.

    Article  PubMed  CAS  Google Scholar 

  • Staehelin, L. A., 1974, Structure and function of intercellular junctions, Int. Rev. Cytol. 39:191–283.

    Article  PubMed  CAS  Google Scholar 

  • Valentich, J. D., 1981, Morphological similarities between the dog kidney cell line MDCK and the mammalian cortical collecting tubule, Ann. N.Y. Acad. Sci. 372:384–405.

    Article  PubMed  CAS  Google Scholar 

  • Van Meer, G., and Simons, K., 1982, Viruses budding from either the apical or the baso-lateral plasma membrane domain of MDCK cell have unique phospholipid compositions, EMBOJ. 1:847–852.

    Google Scholar 

  • Ziomek, C. A., Schulman, S., and Edidin, M., 1980, Redistribution of membrane proteins in isolated mouse intestinal epithelial cells, J. Cell Biol. 86:849–857.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Plenum Press, New York

About this chapter

Cite this chapter

Ojakian, G.K. (1986). Analysis of Epithelial Cell Surface Polarity Development with Monoclonal Antibodies. In: Poste, G., Crooke, S.T. (eds) New Insights into Cell and Membrane Transport Processes. New Horizons in Therapeutics. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5062-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5062-0_15

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5064-4

  • Online ISBN: 978-1-4684-5062-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics