Skip to main content

Hormone-Induced Inositol Lipid Breakdown and Calcium-Mediated Cellular Responses in Liver

  • Chapter
New Insights into Cell and Membrane Transport Processes

Abstract

Although it has been recognized for many years that changes of the intracellular free Ca2+ concentration by a variety of agonists form an important signaling device for regulation of cell function, the source of the Ca2+ and the molecular events regulating receptor-mediated changes of cellular calcium homeostasis have remained recalcitrant problems despite much effort directed towards their elucidation. However, advances made along a number of different lines have contributed towards the rapid increase of knowledge in this area. These include on the one hand the development of fluorescent Ca2+ indicators such as Quin 2 (Tsien, 1983) and more recently Fura 2 (Grynkiewicz et al., 1985), which allow kinetic measurements of changes in the cytosolic free Ca2+ concentration of isolated cells, and on the other hand the elucidation of the signaling roles of two new intracellular second messengers, namely, inositol trisphosphate and diacylglycerol (for reviews see Nishizuka et al., 1984; Nishizuka, 1984a; Berridge and Irvine, 1984; Williamson et al., 1985; Williamson, 1986).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abdel-Latif, A. A., and Akhtar, R. A., 1982, Cations and the acetylcholine-stimulated 32P-labeling of phosphoinositides in the rabbit iris, in: Phospholipids in the Nervous System, Vol. 1 (L. Horrocker, ed.), Raven Press, New York, pp. 251–264.

    Google Scholar 

  • Assimacopoulos-Jeannet, F., McCormack, J. G., and Jeanrenaud, B., 1983, Effect of phenylephrine on pyruvate dehydrogenase activity in rat hepatocytes and its interaction with insulin and glucagon, FEBS Lett. 159:83–88.

    Article  PubMed  CAS  Google Scholar 

  • Baraban, J. M., Gould, R. J., Peroutka, S. J., and Snyder, S. H., 1985, Phorbol ester effects on neurotransmission: Interaction with neurotransmitters and calcium in smooth muscle, Proc. Natl. Acad. Sci. U.S.A. 82:604–607.

    Article  PubMed  CAS  Google Scholar 

  • Batty, I. R., Nahorski, S. R., and Irvine, R. F., 1985, Rapid formation of inositol 1,3,4,5-tetrakisphosphate following muscarinic receptor stimulation of rat cerebral cortical slices, Biochem. J. 323:211–215.

    Google Scholar 

  • Baukal, A. J., Guillemette, G., Rubin, R., Spat, A., and Catt, K. J., 1985, Binding sites for inositol trisphosphate in the bovine adrenal cortex, Biochem. Biophys. Res. Commun. 133:532–538.

    Article  PubMed  CAS  Google Scholar 

  • Berridge, M. J., 1983, Rapid accumulation of inositol trisphosphate reveals that agonists hydrolase polyphosphoinsitides instead of phosphatidyl inositol, Biochem. J. 212:849–858.

    PubMed  CAS  Google Scholar 

  • Berridge, M. J., 1984, Inositol trisphosphate and diacylglycerol as second messengers, Biochem. J. 220:345–360.

    PubMed  CAS  Google Scholar 

  • Berridge, M. J., and Irvine, R. F., 1984, Inositol trisphosphate, a novel second messenger in cellular signal transduction. Nature 312:315–321.

    Article  PubMed  CAS  Google Scholar 

  • Besterman, J. M., and Cuatrecasas, P., 1984, Phorbol esters rapidly stimulate amiloride-sensitive Na+/H+ exchange in a human leukemia cell line, J. Cell Biol. 99:340–343.

    Article  PubMed  CAS  Google Scholar 

  • Blackmore, P. F., Hughes, B. P., Shuman, E. A., and Exton, J. H., 1982, a-Adrenergic activation of Phosphorylase in Hver cells involves mobilization of intracellular calcium without influx of extracellular calcium, J. Biol. Chem. 257:190–197.

    Google Scholar 

  • Blackmore, P. F., Hughes, B. P., Charest, R., Shuman, E. A., and Exton, J. H., 1983, Time course of a-adrenergic and vasopressin actions on Phosphorylase activation, calcium efflux, pyridine nucleotide reduction and respiration in hepatocytes, 7. Biol. Chem. 258:10488–10494.

    CAS  Google Scholar 

  • Brown, J. E., Rubin, L. J., Ghalayini, A. J., Tarver, A. P., Irvine, R. F., Berridge, M. J., and Anderson, R. E., 1984, Myo-inositol polyphosphate may be a messenger for visual excitation in Limulus photoreceptors. Nature 311:160–163.

    Article  PubMed  CAS  Google Scholar 

  • Burgess, G. M., Godfrey, P. P., McKinney, J. S., Berridge, M. J., Irvine, R. F., and Putney, J. W., Jr., 1984, The second messenger Unking receptor activation to internal Ca2+ release in liver. Nature 309:63–66.

    Article  PubMed  CAS  Google Scholar 

  • Burgess, G. M., McKinney, J. S., Irvine, R. F., and Putney, J. W., 1985, Inositol-1,4,5-trisphosphate and inositol 1,3,4-trisphosphate formation in Ca2+ mobilizing hormone-activated cells, Biochem. J. 323:237–248.

    Google Scholar 

  • Bums, C. P., and Rozengurt, E., 1983, Serum, platelet-derived growth factor vasopressin and phorbol esters increase intracellular pH in Swiss 3T3 cells, Biochem. Biophys. Res. Commun. 116:931–938.

    Article  Google Scholar 

  • Busa, W. B., Ferguson, J. E., Joseph, S. K., Williamson, J. R., and Nuccittelli, R., 1985, Activation of frog (Xenopus laevis) eggs by inositol trisphosphate. I. Characterization of Ca2+ release from intracellular stores, J. Cell. Biol. 101:677–682.

    Article  PubMed  CAS  Google Scholar 

  • Castagna, M. Y., Takai, K., Kaibuchi, K., Sano, K., Kikkawa, J., and Nishizuka, Y., 1982, Direct activation of calcium-activated, phospholipid-dependent protein kinase by tumor-promoting phorbol esters, J. Biol. Chem. 257:7847–7851.

    PubMed  CAS  Google Scholar 

  • Choquette, D., Hakim, G., Filoteo, A. G., Plishker, G. A., Bostwick, J. R., and Penniston, J. T., 1984, Regulation of plasma membrane Ca2+ ATPases by lipids of the phospha-tidylinositol cycle, Biochem. Biophys, Res. Commun. 125:908–915.

    Article  CAS  Google Scholar 

  • Coll, K. E., Joseph, S. K., Corkey, B. E., and Williamson, J. R., 1982, Determination of the matrix free Ca2+ concentration and kinetics of Ca2+ efflux in liver and heart mitochondria, J. Biol. Chem. 257:8696–8704.

    PubMed  CAS  Google Scholar 

  • Cooper, R. H., Coll, K. E., and Williamson, J. R., 1985, Differential effects of phorbol ester on phenylephrine and vasopressin-induced Ca2+ mobilization in isolated hepatocytes, J. Biol. Chem. 260:3281–3288.

    PubMed  CAS  Google Scholar 

  • Creba, J. A., Downes, C. P., Hawkins, P. T., Brewster, G., Michell, R. H., and Kirk, C. J., 1983, Rapid breakdown of phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate in rat hepatocytes stimulated by vasopressin and other Ca2+-mobilizing hormones, Biochem. J. 212:733–747.

    PubMed  CAS  Google Scholar 

  • De Chaffoy de Courcelles, D., Roevens, P., and van Belle, H., 1984, 12-0-Tetradecanoyl-phorbol 13-acetate stimulates inositol Hpid phosphorylation in intact human platelets, FEBS Lett. 173:389–393.

    Google Scholar 

  • Denton, R. M., and McCormack, J. G., 1985, Ca2+ transport by mammalian mitochondria and its role in hormone action. Am. J. Physiol. 249:E543-E554.

    PubMed  CAS  Google Scholar 

  • Drust, D. S., and Martin, T. F. J., 1984, Thyrotropin-releasing hormone rapidly activates protein phosphorylation in GH3 pituitary cells by a lipid-linked protein kinase C-mediated pathway, J. Biol. Chem. 259:14520–14530.

    PubMed  CAS  Google Scholar 

  • Fein, A., Payne, R., Corson, D. W., Berridge, M. J., and Irvine, R. F., 1984, Photoreceptor excitation and adaptation by inositol 1,4,5-trisphosphate, Nature 311:157–160.

    Article  PubMed  CAS  Google Scholar 

  • Exton, J. H., 1980, Mechanisms involved in α-adrenergic phenomena: Role of calcium ions in actions of catecholamines in liver and other tissues, Am. J. Physiol. 238:E3-E12.

    PubMed  CAS  Google Scholar 

  • Exton, J. H., 1981, Molecular mechanisms involved in a-adrenergic responses, Mol. Cell. Endocrinol. 23:233–264.

    Article  PubMed  CAS  Google Scholar 

  • Fujita, S., Irita, K., Takeshige, K., and Minakami, S., 1984, Diacylglycerol, l-oleoyl-2-acetyl-glycerol, stimulates superoxide-generation from human neutrophils, Biochem. Biophys. Res. Commun. 120:318–324.

    Article  PubMed  CAS  Google Scholar 

  • Garrison, J. C., Johnsen, D. E., and Campanile, C. P., 1984, Evidence for the role of Phosphorylase kinase, protein kinase C, and other Ca2+-sensitive protein kinases in the response of hepatocytes to angiotensin II and vasopressin, J. Biol. Chem. 259:3283–3292.

    PubMed  CAS  Google Scholar 

  • Gilman, A. G., 1984, G proteins and dual control of adenylate cyclase, Cell 36:577–579.

    Article  PubMed  CAS  Google Scholar 

  • Gomperts, B. D., 1983, Involvement of guanine nucleotide binding protein in the gating of Ca2+ by receptors, Nature 306:64–66.

    Article  PubMed  CAS  Google Scholar 

  • Grynkiewicz, G., Poenie, M., and Tsien, R. Y., 1985, A new generation of indicators with greatly improved fluorescence properties, J. Biol. Chem. 260:3440–3450.

    PubMed  CAS  Google Scholar 

  • Halenda, S. P., and Feinstein, M. B., 1984, Phorbol myristate acetate stimulates formation of phosphatidyl inositol 4-phosphate and phosphatidyl inositol 4,5-bisphosphate in human platelets, Biochem. Biophys. Res. Commun. 124:507–513.

    Article  PubMed  CAS  Google Scholar 

  • Haslam, R. J., and Davidson, M. M. L., 1984, Receptor-induced diacylglycerol formation in permeabilized platelets; possible role for a GTP-binding protein, J. Receptor Res. 4:605–629.

    CAS  Google Scholar 

  • Hawthorne, J. N., 1983, Polyphosphoinositide metabolism in excitable membranes, Biosci. Rep. 3:887–904.

    Article  PubMed  CAS  Google Scholar 

  • Hems, D. A., and Whitton, P. D., 1980, Control of hepatic glycogenolysis, Physiol. Rev. 60:1–50.

    PubMed  CAS  Google Scholar 

  • Hems, D. A., McCormack, J. G., and Denton, R. M., 1978, Activation of pyruvate dehydrogenase in the perfused rat liver by vasopressin, Biochem. J. 176:627–629.

    PubMed  CAS  Google Scholar 

  • Irvine, R. F., Anggard, E. E., Letcher, A. J., and Downes, C. P., 1985, Metabolism of inositol 1,4,5-trisphosphate in rat parotid glands, Biochem. J. 229:505–511.

    PubMed  CAS  Google Scholar 

  • Irvine, R. F., Dawson, R. M. C., and Freinkel, N., 1982, Stimulated phosphatidylinositol turnover: A brief appraisal, in: Contemporary Metabolism, Vol. 2 (N. Freinkel, ed.). Plenum Press, New York, pp. 301–342.

    Chapter  Google Scholar 

  • Irvine, R. F., Letcher, A. J., Lander, D. J., and Downes, C. P., 1984, Inositol trisphosphate in carbachol-stimulated rat parotid glands, Biochem. J. 223:237–243.

    PubMed  CAS  Google Scholar 

  • Joseph, S. K., and Williams, R. J., 1985, Subcellular localization and some properties of the enzymes hydrolyzing inositol polyphosphates in rat liver, FEBS Lett. 180:150–154.

    Article  PubMed  CAS  Google Scholar 

  • Joseph, S. K., and Williamson, J. R., 1983, The origin, quantitation and kinetics of intracellular calcium mobilization by vasopressin and phenylephrine in hepatocytes, J. Biol. Chem. 258:10425–10432.

    PubMed  CAS  Google Scholar 

  • Joseph, S. K., Thomas, A. P., Williams, R. J., Irvine, R. F., and Williamson, J. R., 1984a, Myo-inositol 1,4,5-trisphosphate: A second messenger for the hormonal mobilization of intracellular Ca2+ in liver, J. Biol. Chem. 259:3077–3081.

    PubMed  CAS  Google Scholar 

  • Joseph, S. K., Williams, R. J., Corkey, B. E., Matschinsky, F. M., and Williamson, J. R., 1984b, The effect of inositol trisphosphate on Ca2+ fluxes in insulin-secreting tumor cells, J. Biol. Chem. 259:12952–12955.

    PubMed  CAS  Google Scholar 

  • Joseph, S. K., Coll, K. E., Thomas, A. P., Rubin, R., and Williamson, J. R., 1985, The role of extracellular Ca2+ in the response of the hepatocyte to Ca2+-dependent hormones, J. Biol. Chem. 260:12508–12515.

    PubMed  CAS  Google Scholar 

  • Kaibuchi, K., Takai, Y., Sawamura, M., Hoshijima, M., Fujikura, T., and Nishizuka, Y., 1983, Synergistic functions of protein phosphorylation and calcium mobilization in platelet activation, J. Biol. Chem. 258:6701–6704.

    PubMed  CAS  Google Scholar 

  • Kaibuchi, K., Takai, Y., and Nishizuka, Y., 1985, Protein kinase C and calcium ion in mitogenic response of macrophage-depleted human peripheral lymphocytes, J. Biol. Chem. 260:1366–1369.

    PubMed  CAS  Google Scholar 

  • Kojima, I., Lippes, H., Kojima, K., and Rasmussen, H., 1983, Aldosterone secretion: Effect of phorbol ester and A23187, Biochem. Biophys. Res. Commun. 116:555–562.

    Article  PubMed  CAS  Google Scholar 

  • Kraus-Friedman, N., 1984, Hormonal regulation of hepatic gluconeogenesis, Physiol. Rev. 64:170–259.

    Google Scholar 

  • Labarca, R., Janowsky, A., Patel, J., and Paul, S. M., 1984, Phorbol esters inhibit agonist induced [3H]-inositol-l-P accumulation in rat hippocampal slices, Biochem. Biophys. Res. Commun. 123:703–709.

    Article  PubMed  CAS  Google Scholar 

  • L’Allemain, G., Franchi, A., Cragoe, E., Jr., and Pouyssegur, J., 1984, Blockade of the Na+/H+ antiport abolishes growth factor-induced DNA synthesis in fibroblasts, J. Biol. Chem. 259:4313–4319.

    PubMed  Google Scholar 

  • Lapetina, E. G., and Siegel, F. L., 1983, Shape change induced in human platelets by platelet-activation factor: Correlation with formation of phosphatidic acid and phosphorylation of a 40,000 dalton protein, J. Biol. Chem. 258:7241–7244.

    PubMed  CAS  Google Scholar 

  • Lin, S.-H., Wallace, M. A., and Fain, J. N., 1983, Regulation of Ca2+-Mg2+-ATPase activity in hepatocyte plasma membranes by vasopressin and phenylephrine, Endocrinology 113:2268–2275.

    Article  PubMed  CAS  Google Scholar 

  • Lynch, C. J., Charest, R., Bocckino, S. B., Exton, J. H., and Blackmore, P. F., 1985, Inhibition of hepatic α1-adrenergic effects and binding by phorbol myristate acetate, J. Biol. Chem. 260:2844–2851.

    PubMed  CAS  Google Scholar 

  • Macara, I. G., 1985, Oncogenes, ions, and phospholipids, Am. J. Physiol. 248:C3-C11.

    PubMed  CAS  Google Scholar 

  • Macara, I. G., Marinetti, G. V., and Balduzzi, P. C., 1984, Transforming protein of avian sarcoma virus UR2 is associated with phosphatidylinositol kinase activity: Possible role in tumorigenesis, Proc. Natl. Acad. Sci. U.S.A. 81:2728–2732.

    Article  PubMed  CAS  Google Scholar 

  • Maclntyre, D. E., McNicol, A., and Drummond, A. H., 1985, Tumour-promoting phorbol esters inhibit agonist-induced phosphatidate formation and Ca2+ flux in human platelets, FEBS Lett. 180:160–164.

    Article  Google Scholar 

  • Mauger, J.-P., Poggioli, J., Guesdon, F., and Claret, M., 1984, Noradrenaline, vasopressin and angiotensin increases Ca2+ influx by opening a common pool of Ca2+ chhannels in isolated rat liver cells,Biochem. J. 221:121–127.

    PubMed  CAS  Google Scholar 

  • McCormack, J. G., 1985, Studies on the activation of rat liver pyruvate dehydrogenase by adrenahne and glucagon, Biochem. J. 231:597–608.

    PubMed  CAS  Google Scholar 

  • Michell, R. H., 1975, Inositol phospholipids and cell surface receptor function, Biochim. Biophys. Acta 415:81–147.

    PubMed  CAS  Google Scholar 

  • Michell, R. H., 1979, Inositol phospholipids in membrane function. Trends Biochem. Sci. 4:128–131.

    Article  CAS  Google Scholar 

  • Michell, R. H., 1982, Inositol lipid metabolism in dividing and differentiating cells. Cell Calcium 3:429–440.

    Article  PubMed  CAS  Google Scholar 

  • Michell, R. H., Kirk, C. J., Jones, L. M., Downes, C. P., and Creba, J. A., 1981, The stimulation of inositol lipid metabolism that accompanies calcium mobilization in stimulated cells: Defined characteristics and unanswered questions. Trans. R. Soc. Lond. [Biol.] 296:123–137.

    Article  CAS  Google Scholar 

  • Millard, R. W., Grupp, G., Grupp, T. L., Disalvo, J., DePover, A., and Schwartz, A., 1983, Chronotropic, inotropic, and vasodilator actions of diltiazem, nifedipine, and verapamil, Circ. Res. 52(Suppl. I):I29-I39.

    PubMed  CAS  Google Scholar 

  • Moolenaar, W. H., Tertoolen, L. G. J., and deLaat, S. W., 1984a, Growth factors immediately raise cytoplasmic free Ca2+ in human fibroblasts, J. Biol. Chem. 259:8066–8069.

    PubMed  CAS  Google Scholar 

  • Moolenaar, W. H., Tertoolen, L. G. J., and deLaat, S. W., 1984b, Phorbol esters and diacylglycerol mimic growth factors in raising cytoplasmic pH, Nature 312:371–374.

    Article  PubMed  CAS  Google Scholar 

  • Movsesian, M. A., Thomas, A. P., Selak, M., and Williamson, J. R., 1985, Inositol tris-phosphate does not release Ca2+ from permeabilized myocytes and cardiac sarcoplasmic reticulum, FEBS Lett. 185:328–332.

    Article  PubMed  CAS  Google Scholar 

  • Naccache, P. H., Molski, T. F. P., Borgeat, P., White, J. R., and Sha’afi, R. I., 1985, Phorbol esters inhibit FMet-Leu-Phe and leukotriene B4 stimulated calcium mobilization and enzyme secretion in rabbit neutrophils, J. Biol. Chem. 260:2125–2131.

    PubMed  CAS  Google Scholar 

  • Nicchitta, C. V., and Williamson, J. R., 1984, Spermine: A regulator of mitochondrial calcium cycling, J. Biol. Chem. 259:12978–12983.

    PubMed  CAS  Google Scholar 

  • Nishizuka, Y., 1984a, Protein kinases in signal transduction. Trends Biochem. Sci. 9:163–166.

    Article  Google Scholar 

  • Nishizuka, Y., 1984b, The role of protein kinase C in cell surface signal transduction and tumor promotion. Nature 308:693–698.

    Article  PubMed  CAS  Google Scholar 

  • Nishizuka, Y., Takai, Y., Kishimoto, U. K., and Kaibuchi, K., 1984, Phospholipid turnover in hormone action, Recent Prog. Horm. Res. 40:301–341.

    PubMed  CAS  Google Scholar 

  • Orellana, S. A., Solski, P. A., and Brown, S. H., 1985, Phorbol ester inhibits phosphoinositide hydrolysis and calcium mobilization in cultured astrocytoma cells, J. Biol. Chem. 260:5236–5239.

    PubMed  CAS  Google Scholar 

  • Oron, Y., Dascal, N., Nadler, E., and Lupu, M., 1985, Inositol 1,4,5-trisphosphate mimics muscarinic response in Xenopus oocytes. Nature 313:141–143.

    Article  PubMed  CAS  Google Scholar 

  • Pilkis, S. J., Park, C. R., and Claus, T. H., 1978, Hormonal control of hepatic gluconeo-genesis, Vitam. Horm. 36:383–460.

    Article  PubMed  CAS  Google Scholar 

  • Prentki, M., Biden, T. J., Janjic, D., Irvine, R. F., Berridge, M. J., and Wollheim, C. B., 1984, Rapid mobilization of Ca2+ from rat insulinoma microsomes in inositol-1,4,5-trisphosphate, Nature 309:562–564.

    Article  PubMed  CAS  Google Scholar 

  • Prentki, M., Corkey, B. E., and Matschinsky, F. M., 1985, Inositol 1,4,5-trisphosphate and the endoplasmic reticulum Ca2+ cycle of a rat insulinoma cell line, J. Biol. Chem. 260:9185–9190.

    PubMed  CAS  Google Scholar 

  • Prpic, v., Green, K. C., Blackmore, P. F., and Exton, J. H., 1984, Vasopressin, angiotensin II and α1-adrenergic-induced inhibition of Ca2+ transport by rat liver plasma membrane vesicles, 7. Biol. Chem. 250:1382–1385.

    Google Scholar 

  • Putney, J. W., Jr., McKinney, J. S., Aub, D. L., and Leslie, B. A., 1984, Phorbol ester-induced protein secretion in rat parotid gland: Relationship to the role of inositol lipid breakdown and protein kinase C activation in stimulus-secretion coupling, Mol. Pharmacol. 26:261–266.

    PubMed  CAS  Google Scholar 

  • Rasmussen, H., and Barritt, P. Q., 1984, Calcium messenger system: An integrated view, Physiol. Rev. 64:938–984.

    PubMed  CAS  Google Scholar 

  • Reinhart, P. H., Taylor, W. M., and Bygrave, F. L., 1982, Calcium ion fluxes induced by the action of a-adrenergic agonists in perfused rat liver, Biochem. J. 208:619–630.

    PubMed  CAS  Google Scholar 

  • Reinhart, P. H., Taylor, W. M., and Bygrave, F. L., 1984a, The role of calcium ions in the mechanism of action of a-adrenergic agonists in rat liver, Biochem. J. 223:1–13.

    PubMed  CAS  Google Scholar 

  • Reinhart, P. H., Taylor, W. M., and Bygrave, F. L., 1984b, The contribution of both extracellular and intracellular calcium to the action of a-adrenergic agonists in perfused rat liver, Biochem. J. 220:35–42.

    PubMed  CAS  Google Scholar 

  • Reinhart, P. H., Taylor, W. M., and Bygrave, F. L., 1984c, The action of a-adrenergic agonists on plasma membrane calcium fluxes in perfused rat liver, Biochem. J. 220:43–50.

    PubMed  CAS  Google Scholar 

  • Reuter, H., 1983, Calcium channel modulation by neurotransmitters, enzymes, and drugs, Nature 301:569–574.

    Article  PubMed  CAS  Google Scholar 

  • Rink, T. J., Sanchez, A., and Hallam, T. J., 1983, Diacylglycerol and phorbol ester stimulate secretion without raising cytoplasmic free calcium in human platelets. Nature 305:317–319.

    Article  PubMed  CAS  Google Scholar 

  • Rosoff, P. M., Stein, L. F., and Cantley, L. C., 1984, Phorbol esters induce differentiation in a pre-B-lymphocyte cell line by enhancing Na+/H+ exchange, J. Biol. Chem. 259:7056–7060.

    PubMed  CAS  Google Scholar 

  • Schwartz, A., Grupp, G., Millard, R. W., Grupp, I. L., Lathrop, D. A., Matlib, M. A., Vaghy, P., and Valle, J. R., 1981, Calcium-channel blockers: Possible mechanisms of protective effects on the ischemic myocardium, in:New Perspectives on Calcium Antagonists (G. D. Weiss, ed.), Waverly Press, Baltimore, pp. 191–210.

    Google Scholar 

  • Seyfred, M. A., Farrell, L. E., and Wells, W. W., 1984, Characterization of D-myo-inositol 1,4,5-trisphosphate phosphatase in rat liver plasma membranes, J. Biol. Chem. 259:13204–13208.

    PubMed  CAS  Google Scholar 

  • Shears, S. B., and Kirk, C. J., 1984, Determination of mitochondrial calcium content in hepatocytes by a rapid cellular fractionation technique, Biochem. J. 219:383–389.

    PubMed  CAS  Google Scholar 

  • Sies, H., Graf, P., and Crane, D., 1983, Decreased flux through pyruvate dehydrogenase during calcium ion movements induced by vasopressin, α-adrenergic agonists, and the ionophore A23187 in perfused rat liver, Biochem. J. 212:271–278.

    PubMed  CAS  Google Scholar 

  • Storey, D. J., Shears, S. B., Kirk, C. J. and Michell, R. H., 1984, Stepwise enzymatic dephosphorylation of inositol 1,4,5-trisphosphate to inositol in liver, Nature 312:374–376.

    Article  PubMed  CAS  Google Scholar 

  • Streb, H., Irvine, R. F., Berridge, M. J., and Schulz, I., 1983, Release of Ca2+ from a nonmitochondrial intracellular store in pancreatic acinar cells by inositol 1,4,5-trisphosphate, Nature 306:67–69.

    Article  PubMed  CAS  Google Scholar 

  • Suematsu, E., Hirata, M., Hashimoto, T., and Kuriyama, H., 1984, Inositol 1,4,5-trisphosphate releases Ca2+ from intracellular store sites in skinned single cells of porcine coronary artery, Biochem. Biophys. Res. Commun. 120:481–485.

    Article  PubMed  CAS  Google Scholar 

  • Sugimoto, Y., Whitman, M., Cantley, L. C., and Erikson, R. L., 1984, Evidence that the Rous sarcoma virus transforming gene product phosphorylates phosphatidylinositol and diacylglycerol, Proc. Natl. Acad. Sci. U.S.A. 81:2117–2121.

    Article  PubMed  CAS  Google Scholar 

  • Taylor, M. V., Metcalfe, J. C., Hesketh, T. R., Smith, G. A., and Moore, J. P., 1984, Mitogens increase phosphorylation of phosphoinositides in thymocytes. Nature 312:462–465.

    Article  PubMed  CAS  Google Scholar 

  • Thomas, A. P., Marks, J. S., Coll, K. E., and Williamson, J. R., 1983, Quantitation and early kinetics of inositol lipid changes induced by vasopressin in isolated and cultured hepatocytes, J. Biol. Chem. 258:5716–5725.

    PubMed  CAS  Google Scholar 

  • Thomas, A. P., Alexander, J., and Williamson, J. R., 1984, Relationship between inositol polyphosphate production and in the increase of cytosolic free Ca2+ induced by vasopressin in isolated hepatocytes, J. Biol. Chem. 259:5574–5584.

    PubMed  CAS  Google Scholar 

  • Tsien, R. Y., 1983, Intracellular measurements of ion activities, Annu. Rev. Biophys. Bioeng. 12:91–116.

    Article  PubMed  CAS  Google Scholar 

  • Vergara, T., Tsien, R. Y., and Delay, M., 1985, Inositol 1,4,5-trisphosphate: A possible chemical link in excitation-contraction coupling, Proc. Natl. Acad. Sci. U.S.A. 82:6352–6356.

    Article  PubMed  CAS  Google Scholar 

  • Vincentini, L. M., DiVirgilio, F., Ambrosini, A., Pozzan, T., andMeldolesi, J., 1985, Tumor promoter phorbol 12-myristate, 13-acetate inhibits phosphoinositide hydrolysis and cytosolic Ca2+ rise induced by the activation of muscarinic receptors in PC 12 cells, Bioehem. Biophys. Res. Commun. 127:310–317.

    Article  Google Scholar 

  • Watson, S. P., and Lapetina, E., 1985, 1,2-Diacylglycerol and phorbol ester inhibit agonist-induced products of inositolphosphate in human platelets. Possible implications for negative feedback regulation of inositol phospholipid hydrolysis, Proc. Natl. Acad. Sci. U.S.A. 82:2623–2626.

    Google Scholar 

  • Williamson, J. R., 1986, Role of inositol lipid breakdown in the generation of intracellular signals, Hypertension, in press.

    Google Scholar 

  • Williamson, J. R., Cooper, R. H., and Hoek, J. B., 1981, Role of calcium in the hormonal regulation of liver metabolism, Bioehim. Biophys. Acta 639:243–295.

    Google Scholar 

  • Williamson, J. R., Cooper, R. H., Joseph, S. K., and Thomas, A. P., 1985, Inositol tris-phosphate and diacylglycerol as intracellular second messengers in liver. Am. J. Physiol. 248:C203-C216.

    Google Scholar 

  • Wilson, D. B., Bross, T. E., Hofmann, S. L., and Majerus, P. W., 1984, Hydrolysis of polyphosphoinositides by purified sheep seminal vesicle phospholipase C enzymes. J. Biol. Chem. 259:11718–11724.

    PubMed  CAS  Google Scholar 

  • Whitaker, M., and Irvine, R. F., 1984, Inositol 1,4,5-trisphosphate microinjection activates sea urchin eggs. Nature 312:636–639.

    Article  CAS  Google Scholar 

  • Zawalich, W., Brown, C., and Rasmussen, H., 1983, Insulin secretion: Combined effects of phorbol ester and A23187, Bioehem. Biophys. Res. Commun. 117:448–455.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Plenum Press, New York

About this chapter

Cite this chapter

Williamson, J.R., Joseph, S.K., Coll, K.E., Thomas, A.P., Verhoeven, A., Prentki, M. (1986). Hormone-Induced Inositol Lipid Breakdown and Calcium-Mediated Cellular Responses in Liver. In: Poste, G., Crooke, S.T. (eds) New Insights into Cell and Membrane Transport Processes. New Horizons in Therapeutics. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5062-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5062-0_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5064-4

  • Online ISBN: 978-1-4684-5062-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics