Skip to main content

Agonist-Dependent Phosphoinositide Metabolism

A Bifurcating Signal Pathway

  • Chapter
New Insights into Cell and Membrane Transport Processes

Part of the book series: New Horizons in Therapeutics ((NHTH))

Abstract

The arrival of a chemical signal at the surface of a cell initiates a profound change in cellular activity providing it can gain access to one of the intracellular signal pathways. These signal pathways begin at the cell surface with a specific receptor, which detects the external signal and relays the information to a limited number of transducing mechanisms, which encode the message into various second messengers. A classic example of an intracellular second messenger is cAMP. Recently there has been rapid progress in the identification of two new second messengers, inositol trisphosphate and diacylglycerol, which are related to each other in that they are both derived from a common precursor, which is a unique inositol lipid located within the inner leaflet of the plasma membrane (Berridge, 1984; Berridge and Irvine, 1984; Nishizuka, 1984a,b).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agranoff, B. W., Murthy, P., and Seguin, E. B., 1983, Thrombin-inducedphosphodiesteratic cleavage of phosphatidylinositol bisphosphate in human platelets, J. Biol. Chem. 258:2076–2078.

    PubMed  CAS  Google Scholar 

  • Aloyo, V. J., Zwiers, H., and Gispen, W. H., 1983, Phosphorylation of B-50 protein by calcium-activated, phospholipid-dependent protein kinase and B-50 protein kinase, J. Neurochem. 41:649–653.

    Article  PubMed  CAS  Google Scholar 

  • Beaven, M. A., Moore, J. P., Smith, G. A., Hesketh, T. R., and Metcalfe, J. C., 1984, The calcium signal and phosphatidyhnositol breakdown in 2H3 cells, J. Biol. Chem. 259:7137–7142.

    Google Scholar 

  • Berridge, M. J., 1981, Phosphatidylinositol hydrolysis: A multifunctional transducing mechanism, Mot. Cell. Endocrinol. 24:115–140.

    Article  CAS  Google Scholar 

  • Berridge, M. J., 1984, Inositol trisphosphate and diacylglycerol as second messengers, Biochem. J. 220:345–360.

    CAS  Google Scholar 

  • Berridge, M. J., and Irvine, R. F., 1984, Inositol trisphosphate, a novel second messenger in cellular signal transduction, Nature 312:315–321.

    Article  PubMed  CAS  Google Scholar 

  • Berridge, M. J., Downes, M. J., and Hanley, M. R., 1982, Lithium amplifies agonist-dependent phosphatidylinositol responses in brain and salivary glands, Biochem. J. 206:587–595.

    PubMed  CAS  Google Scholar 

  • Berridge, M. J., Heslop, J. P., Irvine, R. F., and Brown, K. D., 1984, Inositol trisphosphate formation and calcium mobilization in Swiss 3T3 cells in response to platelet-derived growth factor,Biochem. J. 222:195–201.

    PubMed  CAS  Google Scholar 

  • Besterman, J. M., and Cuatrecasas, P., 1984, Phorbol esters rapidly stimulate amiloride-sensitive exchange in a human leukemic cell line, J. Cell Biol. 99:340–343.

    Article  PubMed  CAS  Google Scholar 

  • Billah, M. M., and Lapetina, E. G., 1982a, Rapid decrease of phosphatidylinositol 4,5-biphosphate in thrombin-stimulated platelets, J. Biol. Chem. 257:12705–12708.

    PubMed  CAS  Google Scholar 

  • Billah, M. M., and Lapetina, E. G., 1982b, Evidence for multiple metabolic pools of phosphatidylinositol in stimulated platelets, J. Biol. Chem. 257:11856–11859.

    PubMed  CAS  Google Scholar 

  • Bokoch, G. M., and Gilman, A. G., 1984, Inhibition of receptor-mediated release of arach-idonic acid by pertussis toxin. Cell 39:301–308.

    Article  PubMed  CAS  Google Scholar 

  • Broekman, M. J., Ward, J. W., and Marcus, A. J., 1980, Phospholipid metabolism in stimulated human platelets: Changes in phosphatidylinositol, phosphatidic acid, and lyso-phospholipids, J. Clin. Invest. 66:275–283.

    Article  PubMed  CAS  Google Scholar 

  • Burns, C. P., and Rozengurt, E., 1983, Serum, platelet-derived growth factor, vasopressin and phorbol esters increase intracellular pH in Swiss 3T3 cells, Biochem. Biophys. Res. Commun. 116:931–938.

    Article  PubMed  CAS  Google Scholar 

  • DeChaffoy de Courcelles, D., Roevens, P., and Van Belle, H., 1984, 12-0-Tetradecanoylphorbol 13-acetate stimulates inositol lipid phosphorylation in intact human platelets, FEBS Lett. 173:389–393.

    Google Scholar 

  • Delbeke, D., Kojima, I. Dannies, P. S., and Rasmussen, H., 1984, Synergistic stimulation of prolactin release by phorbol ester, A23187 and forskolin, Biochem. Biophys. Res. Commun. 123:735–741.

    Google Scholar 

  • de Pont, J. J. H. H. M., and Fleuren-Jacobs, A. M. M., 1984, Synergistic effect of A23187 and a phorbol ester on amylase secretion from rabbit pancreatic acini, FEBS Lett. 170:64–68.

    Article  PubMed  Google Scholar 

  • Downes, C. P., and Michell, R. H., 1982, Phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate: Lipids in search of a function. Cell Calcium 3:467–502.

    Article  PubMed  CAS  Google Scholar 

  • Downes, C. P. Mussat, M. C., and Michell, R. H., 1982, The inositol trisphosphate Phosphomonoesterase of the human erythrocyte membrane, Biochem. J. 203:169–177.

    Google Scholar 

  • Drummond, A. H., and Raeburn, C. A., 1984, The interaction of lithium with thyrotropin-releasing hormone-stimulated lipid metabolism in GH3 pituitary tumour cells, Biochem. J. 223:129–136.

    Google Scholar 

  • Fain, J. N., and Berridge, M. J., 1979, Relationship between phosphatidylinositol synthesis and recovery of 5-hydroxytryptamine-responsive Ca2+ flux in blowfly salivary gland, Biochem. J. 180:655–661.

    PubMed  CAS  Google Scholar 

  • Fain, J. N., Li, S.-Y., Litosch, L, and Wallace, M., 1984, Synergistic activation of rat hepatocyte glycogen Phosphorylase by A23187 and phorbol ester, Biochem. Biophys. Res. Commun. 119:88–94.

    Article  PubMed  CAS  Google Scholar 

  • Garrison, J. C., Johnsen, D. E., and Campanile, C. P., 1984, Evidence for the role of Phosphorylase kinase, protein kinase C, and other Ca2+ sensitive protein kinases in the response of hepatocytes to angiotensin II and vasopressin, J. Biol. Chem. 259:3283–3292.

    Google Scholar 

  • Gelfand, E. W., Dosh, H.-M., Hastings, D., and Shore, A., 1979, Lithium: A modulator of cyclic AMP-dependent events in lymphocytes. Science 203:365–367.

    Article  PubMed  CAS  Google Scholar 

  • Gomperts, B. D., 1983, Involvement of guanine nucleotide-binding protein in the gating of Ca2+ by receptors. Nature 306:64–66.

    Article  PubMed  CAS  Google Scholar 

  • Goodhardt, M., Ferry, N., Geynet. P., and Hanoune, J., 1982, Hepatic a i-adrenergic receptors show agonist regulation by guanine nucleotides, J. Biol. Chem. 257:11577–11583.

    Google Scholar 

  • Greenberg, M. E., and Ziff, E. B., 1984, Stimulation of 3T3 cells induces transcription of the c-fos proto-oncogene, Nature 311:433–438.

    Article  PubMed  CAS  Google Scholar 

  • Habenicht, A. J. R., Glomset, J. A., King, W. C., Nist, C., Mitchell, C. D., and Ross, R., 1981, Early changes in phosphatidylinositol and arachidonic acid metabolism in quiescent Swiss 3T3 cells stimulated to divide by platelet-derived growth factor, J. Biol. Chem. 256:12329–12335.

    PubMed  CAS  Google Scholar 

  • Hallcher, L. M., and Sherman, W. R., 1980, The effects of lithium ion and other agents on the activity of myo-inositol-l-phosphatase from bovine brain, J. Biol. Chem. 255:10896–10901.

    Google Scholar 

  • Haslam, R. J., and Davidson, M. M. L., 1984a, Guanine nucleotides decrease the free [Ca2+] required for secretion of serotonin from permeabilized blood platelets, FEBS Lett. 174:90–95.

    Article  PubMed  CAS  Google Scholar 

  • Haslam, R. J., and Davidson, M. M. L., 1984b, Potentiation by thrombin of the secretion of serotonin from permeabilized platelets equilibrated with Ca2+ buffers, Biochem. J. 222:351–361.

    PubMed  CAS  Google Scholar 

  • Haslam, R. J., and Davidson, M. M. L., 1984c, Receptor-induced diacylglycerol formation in permeabilized platelets: Possible role for a GTP-binding protein, J. Receptor Res. 4:605–629.

    CAS  Google Scholar 

  • Hesketh, T. R., Moore, J. P., Morris, J. D. H., Taylor, M. V., Rogers, J., Smith, G. A., and Metcalfe, J. C., 1985, A common sequence of calcium and pH signals in the mitogenic stimulation of eukaryotic cells. Nature 313:481–484.

    Article  PubMed  CAS  Google Scholar 

  • Hokin, M. R., and Hokin, L. E., 1953, Enzyme secretion and the incorporation of p2+ into phospholipids of pancreas slices, J. Biol. Chem. 203:967–977.

    PubMed  CAS  Google Scholar 

  • Irvine, R. F., Letcher, A. J., and Dawson, R. M. C., 1984a, Phosphatidylinositol-4,5-bisphosphate phosphodiesterase and Phosphomonoesterase activities of rat brain, Biochem. J. 218:177–185.

    PubMed  CAS  Google Scholar 

  • Irvine, R. F., Letcher, A. J., Lander, D. J., andDownes, C. P., 1984b, Inositol trisphosphate in carbachol-stimulated rat parotid glands, Biochem. J. 223:237–243.

    PubMed  CAS  Google Scholar 

  • Irvine, R. F., Brown, K. D., and Berridge, M. J., 1984c, Specificity of inositol trisphosphate-induced calcium release from permeabilized Swiss-mouse 3T3 cells, Biochem. J. 222:269–272.

    PubMed  CAS  Google Scholar 

  • Jolles, J., Zwiers, H., van Dongen, C. J., Schotman, P., Wirtz, K. W. A., and Gispen, W. H., 1980, Modulation of brain polyphosphoinositide metabolism by ACTH-sensitive protein phosphorylation. Nature 286:623–625.

    Article  PubMed  CAS  Google Scholar 

  • Jolles, J., Zwiers, H., Dekker, A., Wirtz, K. W. A., and Gispen, W. H., 1981, Corticotropin-(l–24)-tetracosapeptide affects protein phosphorylation and polyphosphoinositide metaboHsm in rat brain, Biochem. J. 194:283–291.

    PubMed  CAS  Google Scholar 

  • Jork, R., De Graan, P. W. E., Van Dongen, C. J., Zwiers, H., Matthias, H., and Gispen, W. H., 1984, Dopamine-induced changes in protein phosphorylation and polyphosphoinositide metaboHsm in rat hippocampus. Brain Res. 291:73–81.

    Article  PubMed  CAS  Google Scholar 

  • Kaibuchi, K., Takai, Y., Sawamura, M., Hoshijima, M., Fujikura, T., and Nishizuka, Y., 1983, Synergistic functions of protein phosphorylation and calcium mobilization in platelet activation, J. Biol. Chem. 258:6701–6704.

    PubMed  CAS  Google Scholar 

  • Kirk, C. J., Michell, R. H., and Hems, D. A., 1981, Phosphatidylinositol metabolism in rat hepatocytes stimulated by vasopressin, Biochem. J. 194:155–165.

    PubMed  CAS  Google Scholar 

  • Knight, D. E., and Baker, P. F., 1983, The phorbol ester TPA increase the affinity of exocytosis for calcium in ’leaky’ adrenal medullary cells, FEBS Lett. 160:98–100.

    Article  PubMed  CAS  Google Scholar 

  • Koenig, H., Goldstone, A., and Lu, C. Y., 1983, Polyamines regulate calcium fluxes in a rapid plasma membrane response, Nature 305:530–534.

    Article  PubMed  CAS  Google Scholar 

  • Kojima, L, Lippes, H., Kojima, K., and Rasmussen, H., 1983, Aldosterone secretion: Effect of phorbol ester and A23187, Biochem. Biophys. Res. Commun. 116:555–562.

    Article  PubMed  CAS  Google Scholar 

  • Kolesnick, R. N., and Gershengom, M. C., 1984, Ca2+ ionophores affect phosphoinositide metabohsm differently than thyrotropin-releasing hormone in GH3 pituitary cells, J. Biol. Chem. 259:9514–9519.

    PubMed  CAS  Google Scholar 

  • Koo, C., Lefkowitz, R. J., and Snyderman, R., 1983, Guanine nucleotides modulate the binding affinity of the oligopeptide chemoattractant receptor on human polymorphonuclear leukocytes, J. Clin. Invest. 72:748–753.

    Article  PubMed  CAS  Google Scholar 

  • Kruijer, W., Cooper, J. A., Hunter, T., and Verma, I. M., 1984, Platelet-derived growth factor induces rapid but transient expression of the c-fos gene and protein. Nature 312:711–716.

    Article  PubMed  CAS  Google Scholar 

  • Litosch, I., Wallis, C., and Fain, J. N., 1985, 5-Hydroxytryptamine stimulates inositol phosphate production in cell-free system from blowfly salivary glands: Evidence for a role of GTP in coupling receptor activation to phosphoinositide breakdown, J. Biol. Chem. 260:5464–5471.

    Google Scholar 

  • Mastro, A. M., and Smith, M. C., 1983, Calcium-dependent activation of lymphocytes by ionophore, A23187 and a phorbol ester tumor promotor, J. Cell. Physiol. 116:51–56.

    Article  PubMed  CAS  Google Scholar 

  • Michell, R. H., 1975, Inositol phospholipids and cell surface receptor function, Biochim. Biophys. Acta 415:81–147.

    PubMed  CAS  Google Scholar 

  • Michell, R. H., Kirk, C. J., Jones, L. M., Downes, C. P., and Creba, J. A., 1981, The stimulation of inositol lipid metabolism that accompanies calcium mobilization in stimulated cells: Defined characteristics and unanswered questions. Phil. Trans. R. Soc. [Biol.] 296:123–137.

    Article  CAS  Google Scholar 

  • Molski, T. F. P., Naccache, P. H., Marsh, M. L., Kermode, J., Becker, E. L., and Sha’afi, R. I., 1984, Pertussis toxin inhibits the rise in intracellular concentration of free calcium that is induced by chemotactic factors in rabbit neutrophils: possible role of the ’G proteins’ in calcium mobilization, Biochem. Biophys. Res. Commun. 124:644–650.

    Article  PubMed  CAS  Google Scholar 

  • Monaco, M. E., 1982, The phospatidyhnositol cycle in WRK-1 cells, J. Biol. Chem. 257:2137–2139.

    PubMed  CAS  Google Scholar 

  • Moolenaar, W. H., Tertoolen, L. G. J., and de Laat, S. W., 1984, Growth factors immediately raise cytoplasmic free Ca2+ in human fibroblasts, J. Biol. Chem. 259:8066–8069.

    PubMed  CAS  Google Scholar 

  • Nakamura, T., and Ui, M., 1984, Islet-activating protein, pertussis toxin, inhibits Ca2+-induced and guanine nucleotide-dependent releases of histamine and arachidonic acid from rat mast cells, FEBS Lett. 173:414–418.

    Article  PubMed  CAS  Google Scholar 

  • Nishizuka, Y., 1983, Phospholipid degradation and signal translation for protein phosphorylation, Trends Biochem. Sci. 8:13–16.

    Article  CAS  Google Scholar 

  • Nishizuka, Y., 1984a, The role of protein kinase C in cell surface signal transduction and tumor promotion. Nature 308:693–697.

    Article  PubMed  CAS  Google Scholar 

  • Nishizuka, Y., 1984b, Turnover of inositol phospholipids and signal transduction. Science 255:1365–1370.

    Article  Google Scholar 

  • Okajima, F., and Ui, M., 1984, ADP-ribosylation of the specific membrane protein by islet-activating protein, pertussis toxin, associated with inhibition of a chemotactic peptide-induced arachidonate release in neutrophils, J. Biol. Chem. 259:13863–13871.

    PubMed  CAS  Google Scholar 

  • Putney, J. W., McKinney, J. S., Aub, D. L., and Leslie, B. A., 1984, Phorbol ester-induced protein secretion in rat parotid gland, Mol. Pharmacol. 26:261–266.

    PubMed  CAS  Google Scholar 

  • Rasmussen, H., 1981, Calcium and cAMP as Synarchic Messengers, John Wiley & Sons, New York.

    Google Scholar 

  • Rasmussen, H., Forder, J., Kojima, I., and Scriabine, A., 1984, TPA-induced contraction of isolated rabbit vascular smooth muscle, Biochem. Biophys. Res. Commun. 122:776–784.

    Google Scholar 

  • Rink, T. J., Sanchez, A., and Hallam, T. J., 1983, Diacylglycerol and phorbol ester stimulate secretion without raising cytoplasmic free calcium in human platelets. Nature 305:317–319.

    Google Scholar 

  • Rittenhouse-Simmons, S., 1979, Production of diglyceride from phosphatidylinositol in activated human platelets, J. Clin. Invest. 63:580–587.

    Article  PubMed  CAS  Google Scholar 

  • Rittenhouse, S. E., and Home, W. C., 1984, lonomycin can elevate intraplatelet Ca2+ and activate phospholipase A without activating phospholipase C, Biochem. Biophys. Res. Commun. 123:393–397.

    Google Scholar 

  • Robinson, J. M., Badwey, J. A., Kamovsky, M. L., and Kamovsky, M. J., 1984, Superoxide release by neutrophils: Synergistic effects of a phorbol ester and a calcium ionophore, Biochem. Biophys. Res. Commun. 112x1–19.

    Google Scholar 

  • Rosofif, P. M., Stein, L. F., and Cantley, L. C., 1984, Phorbol esters induce differentiation in a pre-B-lymphocyte cell line by enhancing Na+/H+ exchange, J. Biol. Chem. 259:7056–7060.

    Google Scholar 

  • Rybak, S. M., and Stockdale, F. E., 1981, Growth effects of lithium chloride in BALB/c3T3 fibroblasts and Madin-Darby canine kidney epithelial cells, Exp. Cell Res. 136:263–270.

    Google Scholar 

  • Seyfred, M. A., Farrell, L. E., and Wells, W. W., 1984, Characterization of D-myo inositol 1,4,5-trisphosphate phosphatase in rat Hver plasma membrane, J. Biol. Chem. 259:13204–13208.

    PubMed  CAS  Google Scholar 

  • Simon, M.-F., Chap, H., and Douste-Blazy, L., 1984, Activation of phospholipase C in thrombin-stimulated platelets does not depend on cytoplasmic free calcium concentration, FEBS Lett. 170:43–48.

    Article  PubMed  CAS  Google Scholar 

  • Smith, C. D., Lane, B. C., Kusaka, I., Verghese, M. W., and Snyderman, R., 1985, Chemo-attractant receptor induced hydrolysis of phosphatidylinositol 4, 5-bisphosphate (PIP2) in human polymorphonuclear leukocyte membranes. J. Biol. Chem. 260:5875–5878.

    PubMed  CAS  Google Scholar 

  • Snyderman, R., and Pike, M. C., 1984, Chemoattractant receptors on phagocytic cells, Annu. Rev. Immunol. 2:257–281.

    Article  PubMed  CAS  Google Scholar 

  • Tanaka, C., Taniyama, K., and Kusunoki, M., 1984, A phorbol ester and A23187 act synergistically to release acetylcholine from the guinea pig ileum, FEBS Lett. 175:165–169.

    Google Scholar 

  • Taylor, M. V., Metcalfe, J. C., Hesketh, T. R., Smith, G. A., and Moore, J. P., 1984, Mitogens increase phosphorylation of phosphoinositides in thymocytes. Nature 312:462–465.

    Article  PubMed  CAS  Google Scholar 

  • Thomas, A. P., Alexander, J., and Williamson, J. R., 1984, Relationship between inositol polyphosphate production and the increase of cytosolic free Ca2+ induced by vasopressin in isolated hepatocytes, J. Biol. Chem. 259:5574–5584.

    PubMed  CAS  Google Scholar 

  • Tomooka, Y., Imagawa, W., Nandi, S., and Bern, H. A., 1983, Growth effect of lithium on mouse mammary epithelial cells in serum-free collagen gel culture, J. Cell. Physiol. 117:290–296.

    Article  PubMed  CAS  Google Scholar 

  • Van Dongen, C. J., Zwiers, H., and Gispen, W. H., 1984, Purification and partial characterization of the phosphatidylinositol 4-phosphate kinase from rat brain, Biochem. J. 223:197–203.

    PubMed  Google Scholar 

  • Volpi, M., Yassin, R., Naccache, P. H., and Sha’afi, R. L, 1983, Chemotactic factor causes rapid decreases in phosphatidylinositol 4,5-bisphosphate and phosphatidylinositol 4-monophosphate in rabbit neutrophils, Biochem. Biophys. Res. Commun. 112:957–964.

    Article  PubMed  CAS  Google Scholar 

  • Volpi, M., Naccache, P. H., Molski, T. F. P., Shefcyk, J., Huang, C.-K., Marsh, M. L., Munoz, J., Becker, E. L., and Sha’afi, R. I., 1985, Pertussis toxin inhibits the formyl-methionyl-leucyl-phenylalanine but not the phorbol ester stimulated changes in ion fluxes, protein phosphorylation and phosphoHpid metabolism in rabbit neutrophils: Role of the “G-proteins” in excitation response coupling, Proc. Natl. Acad. Sci. U.S.A. 82:2708–2712.

    Article  PubMed  CAS  Google Scholar 

  • Whitaker, M., and Irvine, R. F., 1984, Inositol 1,4,5-trisphosphate microinjection activates sea urchin eggs. Nature 312:636–639.

    Article  CAS  Google Scholar 

  • Whiteley, B., Cassel, D., Zhuang, Y.-X., and Glaser, L., 1984, Tumour promotor phorbol 12-myristate 13-acetate inhibits mitogen-stimulated Na2+/H+ exchange in human epidermoid carcinoma A431 cells, J. Cell Biol. 99:1162–1166.

    Article  PubMed  CAS  Google Scholar 

  • Whitman, M. R., Epstein, J., and Cantley, L., 1984, Inositol 1,4,5-trisphosphate stimulates phosphorylation of a 62,000-dalton protein in monkey fibroblasts and bovine brain cell lysates, J. Biol. Chem. 259:13652–13655.

    PubMed  CAS  Google Scholar 

  • Yano, K., Nakashima, S., and Nazawa, Y., 1983, Coupling of polyphosphoinositide breakdown with calcium influx in formylmethionyl-leucyl-phenylalanine-stimulated rabbit neutrophils, FEBS Lett. 161:296–300.

    Article  PubMed  CAS  Google Scholar 

  • Zawalich, W., Brown, C., and Rasmussen, H., 1983, Insulin secretion: Combined effects of phorbol ester and A23187, Biochem. Biophys. Res. Commun. 117:448–455.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Plenum Press, New York

About this chapter

Cite this chapter

Berridge, M.J. (1986). Agonist-Dependent Phosphoinositide Metabolism. In: Poste, G., Crooke, S.T. (eds) New Insights into Cell and Membrane Transport Processes. New Horizons in Therapeutics. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5062-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5062-0_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5064-4

  • Online ISBN: 978-1-4684-5062-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics