Skip to main content

Interstitial Solutions

  • Chapter
  • 244 Accesses

Abstract

It was stated in Chapter 2 that when the atomic diameter of a metalloid is about 59% or less than that of a solvent metal, then the metalloid may form an interstitial solid solution. Such metalloids are hydrogen, boron, carbon, nitrogen, and oxygen, but silicon, phosphorus, and sulfur may also form interstitial solid solutions in certain favorable cases. The interstitial solid solutions of hydrogen and carbon in metals have received particular attention because they form some of the most interesting alloy systems. Metalhydrogen systems are very useful in hydrogen storage, hydrogen purification, and isotope separation, and metal-carbon systems have unusual structural and mechanical properties. We shall present and discuss the Pd-H and Fe-C systems and then the Wagner theory on the solutions of interstitials in binary metal solutions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. Alefeld and J. Voelkl, editors, Hydrogen in Metals I, and II, Springer-Verlag, Berlin (1978).

    Google Scholar 

  2. G. A. Lewis, The Palladium Hydrogen System, Academic Press, New York (1967).

    Google Scholar 

  3. W. M. Mueller, J. P. Blackledge, and G. G. Libowitz, Metal Hydrides, Academic Press, New York (1968).

    Google Scholar 

  4. H. Frieske and E. Wicke, Ber. Bunsenges. Phys. Chem. 77, 50 (1973).

    Google Scholar 

  5. E. Wicke and H. Brodowsky, with H. Zuchner, in Hydrogen in Metals II, edited by G. Alefeld and J. Voelkl, Springer-Verlag, Berlin (1978).

    Google Scholar 

  6. T. B. Flanagan, S. Kishimoto, and G. E. Biehl, in Chemical MetallurgyA Tribute to Carl Wagner, edited by N. A. Gokcen, Metall. Soc. AIME, p. 471 (1981).

    Google Scholar 

  7. E. Wicke and G. H. Nernst, Ber. Bunsenges. Phys. Chem. 68, 224 (1964).

    CAS  Google Scholar 

  8. J. F. Lynch and T. B. Flanagan, J . Phys. Chem. 77, 2628 (1973).

    Article  CAS  Google Scholar 

  9. D. M. Nace and J. G. Aston, J . Am. Chem. Soc. 79, 3619, 3623, 3627 (1957).

    Article  CAS  Google Scholar 

  10. J. G. Aston, Engelhard Ind. Tech. Bull. 7, 14 (1966).

    CAS  Google Scholar 

  11. J. D. Clewley, T. Curran, T. B. Flanagan, and W. A. Oates, J . Chem. Soc. Faraday Trans. l 69, 449 (1973).

    Article  CAS  Google Scholar 

  12. S. Schmidt, in Hydrogen in Metals II, edited by G. Alefeld and J. Völkl, Springer-Verlag, Berlin (1978).

    Google Scholar 

  13. G. Sicking, Ber. Bunsenges. Phys. Chem. 76, 790 (1972).

    CAS  Google Scholar 

  14. J. R. Lacher, Proc. R. Soc. London Ser. A 161, 525 (1937).

    Article  CAS  Google Scholar 

  15. M. Shamsuddin and O. J. Kleppa, J . Chem. Phys. 71, 5154 (1979);

    Article  CAS  Google Scholar 

  16. W. A. Oates and R. Ramanathan, in Proceedings, 2nd International Congress on Hydrogen in Metals, Paris, 1977, Paper 2A11, Pergamon Press, Elmsford, New York (1978);

    Google Scholar 

  17. G. Bourreau, O. J. Kleppa, and K. C. Hong, J . Chem. Phys. 67, 3437 (1977).

    Article  Google Scholar 

  18. M. Hillert and L.-I. Staffansson, Acta Chem. Scand. 24, 3618 (1970).

    Article  CAS  Google Scholar 

  19. M. Hillert and M. Jarl, Metall. Trans. AIME 6A, 553 (1975).

    Article  CAS  Google Scholar 

  20. C. Wagner, Z. Phys. Chem. Abt. A 193, 386, 407 (1944).

    CAS  Google Scholar 

  21. See, e.g., B. Baranowski, Part II in Hydrogen in Metals, edited by G. Alefeld and J. Völkl, Springer-Verlag, Berlin (1978), p. 157.

    Google Scholar 

  22. M. J. B. Evans and D. H. Everett, J . Less-Common Met. 49, 123 (1976).

    Article  CAS  Google Scholar 

  23. T. Takeshita, W. E. Wallace, and R. S. Craig, Inorg. Chem. 13, 2283 (1974).

    Article  CAS  Google Scholar 

  24. U. Köbler and J. M. Welter, J . Less-Common Met. 84, 225 (1984).

    Article  Google Scholar 

  25. U. Köbler and T. Schöber, J . Less-Common Met. 60, 101 (1978).

    Article  Google Scholar 

  26. T. Schöber and H. Wenzl, in Hydrogen in Metals II, edited by G. Alefeld and J. Völkl, Springer-Verlag, Berlin, p. 12 (1978).

    Google Scholar 

  27. T. N. Veziroglu and J. B. Taylor, editors, Hydrogen Energy Progress V: Proceedings of the 5th World Hydrogen Energy Conference, Toronto, Canada, 15–20 July 1984, Pergamon Press, Elmsford, New York (1984).

    Google Scholar 

  28. J. O. Bockris, Energy: The Solar Hydrogen Alternative, Wiley, New York (1977).

    Google Scholar 

  29. R. Wiswall, in Hydrogen in Metals II, edited by G. Alefeld and J. Voelkl, Springer-Verlag, Berlin, p. 201 (1978).

    Google Scholar 

  30. J. J. Reilly, Z. Phys. Chem. 117, 155 (1979).

    Article  CAS  Google Scholar 

  31. K. C. Hoffman, J. J. Reilly, C. H. Waide, R. H. Wiswall, and W. E. Winsche, Int. J. Hydrogen Energy 1, 133 (1976).

    Article  CAS  Google Scholar 

  32. G. G. Libowitz, H. F. Hayes, and T. R. P. Gibb, J. Phys. Chem. 62, 76 (1958).

    Article  CAS  Google Scholar 

  33. J. H. N. van Vucht, F. A. Kuijpers, and H. C. Bruning, Philips Res. Rep. 25, 33 (1970)

    Google Scholar 

  34. H. H. van Mal, Philips Res. Rep. Suppl. 1 (1976).

    Google Scholar 

  35. H. H. van Mal, K. H. J. Buschow, and F. A. Kuijpers, J . Less-Common Met. 32, 289 (1973).

    Article  Google Scholar 

  36. J. L. Anderson, T. C. Wallace, A. L. Bowman, C. L. Radosevich, and M. L. Courtney, Hydrogen Absorption by AB 5 Compounds, Los Alamos Sci. Lab., Rep. LA-5320-MS (1973).

    Book  Google Scholar 

  37. F. A. Kuijpers and H. H. van Mal, J . Less-Common Met. 23, 395 (1971).

    Article  CAS  Google Scholar 

  38. G. Bambakidis, editor, Metal Hydrides, Plenum Press, New York (1981).

    Google Scholar 

  39. H. Ohtani, M. Hasebe, and T. Nishizawa, Trans. Iron Steel Inst. Jpn. 24, 857 (1984).

    Article  CAS  Google Scholar 

  40. M. Hasebe, H. Ohtani, and T. Nishizawa, Met. Trans. 16A, 913 (1985).

    CAS  Google Scholar 

  41. J. Ågren, Metall. Trans. AIME 10A, 1847 (1979).

    Article  Google Scholar 

  42. H. Harvig, Jernkontorets Ann. 155, 157 (1971).

    CAS  Google Scholar 

  43. J. Chipman, Metall. Trans. AIME 3, 55 (1972).

    Article  CAS  Google Scholar 

  44. O. Kubaschewski, Iron Binary Phase Diagrams, Springer-Verlag, Berlin (1982).

    Google Scholar 

  45. R. Hultgren, P. D. Desai, D. T. Hawkins, M. Gleiser, and K. K. Kelley, Selected Values of the Thermodynamic Properties of Binary Alloys, ASM, Metals Park, Ohio (1973).

    Google Scholar 

  46. M. Benz and J. F. Elliott, Trans. Metall. Soc. AIME 221, 323 (1961).

    CAS  Google Scholar 

  47. M. Hansen and K. Anderko, Constitution of Binary Alloys, McGraw-Hill, New York (1958); First Supplement by R. P. Elliott (1965); Second Supplement by F. A. Shunk (1969).

    Google Scholar 

  48. R. Hultgren, P. D. Desai, D. T. Hawkins, M. Gleiser, K. K. Kelley, and D. D. Wagman, Selected Values of the Thermodynamic Properties of the Elements, ASM, Metals Park, Ohio (1973).

    Google Scholar 

  49. R. L. Orr and J. Chipman, Trans. Metall. Soc. AIME 239, 630 (1967).

    CAS  Google Scholar 

  50. Y.-Y. Chuang, Y. A. Chang, and R. Schmid, Acta Metall, in press.

    Google Scholar 

  51. Y.-Y. Chuang, R.. Schmid, and Y. A. Chang, Acta Metall, in press.

    Google Scholar 

  52. R. P. Smith, J . Am. Chem. Soc. 68, 1163 (1946).

    Article  CAS  Google Scholar 

  53. H. Schenk, M. G. Frohberg, and E. Jaspert, Archiv. Eisenhütenw. 36, 683 (1965).

    Google Scholar 

  54. K. Bungardt, H. Preisendanz, and G. Lehnert, Arch. Eisenhuettenwes. 35, 999 (1964).

    CAS  Google Scholar 

  55. S. Banya, J. F. Elliott, and J. Chipman, Trans. Metall. Soc. AIME 245, 1199 (1969);

    Google Scholar 

  56. S. Banya, J. F. Elliott, and J. Chipman, Met. Trans. 1A, 1313 (1970).

    Google Scholar 

  57. L. B. Pankratz, J. M. Stuve, and N. A. Gokcen, Thermodynamic Data for Mineral Technology, Bureau of Mines Bulletin 677 (1984).

    Google Scholar 

  58. F. D. Richardson and W. E. Dennis, Trans. Faraday Soc. 49, 171 (1953).

    Article  CAS  Google Scholar 

  59. S. Banya and Y. Matoba, Physical Chemistry of Process Metallurgy, Interscience, New York, pp. 373–402 (1961).

    Google Scholar 

  60. T. Mori, K. Fujimura, H. Okajima, and A. Yamanchi, Tetsu To Hagane 54, 321 (1968).

    CAS  Google Scholar 

  61. E. Schürmann and R. Schmid, Arch. Eisenhuettenwes. 50, 101 (1971).

    Google Scholar 

  62. E. Scheil, T. Schmidt, and J. Wünning, Arch. Eisenhuettenwes. 32, 251 (1961).

    CAS  Google Scholar 

  63. C. Wagner, Acta Metall. 21, 1297 (1973).

    Article  CAS  Google Scholar 

  64. L. Pauling, The Nature of the Chemical Bond, Cornell University Press, Ithaca, New York (1960).

    Google Scholar 

  65. U. Block and H. P. Stüwe, Z. Metallkd. 60, 709 (1969).

    CAS  Google Scholar 

  66. R. J. Fruehan and F. D. Richardson, Trans. Metall. Soc. AIME 245, 1721 (1969).

    CAS  Google Scholar 

  67. E. S. Tankins and N. A. Gokcen, High Temp. Sci. 4, 393 (1972);

    Google Scholar 

  68. E. S. Tankins, Metall. Trans. AIME 1, 2637 (1970).

    CAS  Google Scholar 

  69. K. T. Jacob and J. H. E. Jeffes, Trans. Inst. Min. Metall. C80, 32 (1971).

    Google Scholar 

  70. K. T. Jacob and J. H. E. Jeffes, J. Chem. Thermodyn. 3, 433 (1971),

    Article  CAS  Google Scholar 

  71. K. T. Jacob and J. H. E. Jeffes, J. Chem. Thermodyn. 5, 365 (1973).

    Article  CAS  Google Scholar 

  72. T. Chiang and Y. A. Chang, Metall. Trans. AIME 7B, 453 (1976).

    Article  CAS  Google Scholar 

  73. J.-C. Mathieu, F. Durand, and E. Bonnier, J. Chim. Phys. 62, 1289, 1297 (1965);

    CAS  Google Scholar 

  74. B. Brion, J.-C. Mathieu, P. Hicter, and P. Desré, J. Chim. Phys. 66, 1238, 1745 (1970).

    Google Scholar 

  75. M. Blander and M.-L. Saboungi, in Chemical MetallurgyA Tribute to Carl Wagner, edited by N. A. Gakcen, Metall. Soc. AIME, p. 223 (1981).

    Google Scholar 

  76. N. A. Gokcen, Thermodynamics, Techscience, Hawthorne, California (1975).

    Google Scholar 

  77. N. A. Gokcen, Trans. Metall. Soc. AIME 206, 1558 (1956);

    CAS  Google Scholar 

  78. N. A. Gokcen, Trans. Metall. Soc. AIME 197, 191 (1953).

    Google Scholar 

  79. M. R. Baren and N. A. Gokcen, in Advances in Sulfide Smelting, V. 1 Basic Principles, edited by Y. H. Sohn, D. B. George, and A. D. Zunkel, AIME, Warrendale, Pennsylvania (1983) p. 41;

    Google Scholar 

  80. see also G. Urbain, W. Burgmann, and M. G. Frohberg, C. R. Acad. Sci. Ser. C 263(8), 595 (1966).

    CAS  Google Scholar 

  81. K. T. Jacob and C. B. Alcock, Acta Metall. 20, 221 (1972).

    Article  CAS  Google Scholar 

  82. H. Brodowsky and E. Poeschel, Z. Phys. Chem. 44, 143 (1965).

    Article  CAS  Google Scholar 

  83. H. Brodowsky and H. Husemann, Ber. Bunsenges. Phys. Chem. 70, 626 (1966).

    CAS  Google Scholar 

  84. F. G. Jones and R. D. Pehlke, Metall Trans. AIME 2, 2655 (1971).

    Article  CAS  Google Scholar 

  85. S. J. Wang and H. J. Grabke, Z. Metalld. 61, 597 (1970).

    CAS  Google Scholar 

  86. W. Siegelin, K. H. Lieser, and H. Witte, Z. Elektrochem. 61, 359 (1957).

    Google Scholar 

  87. H. Schnabl, Ber. Bunsenges. Phys. Chem. 68, 549 (1964).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Plenum Press, New York

About this chapter

Cite this chapter

Gokcen, N.A. (1986). Interstitial Solutions. In: Statistical Thermodynamics of Alloys. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5053-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5053-8_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5055-2

  • Online ISBN: 978-1-4684-5053-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics