Skip to main content

Redox Scanning in the Study of Metabolic Zonation of Liver

  • Chapter
Book cover Regulation of Hepatic Metabolism

Abstract

The metabolic activity of an organ, e.g., the liver, will create gradients of oxygen, substrates, hormones, and products of metabolism along the capillaries. These concentration gradients will tend to subdivide the organ into zones of different metabolic activity at the capillary level. In many organs, e.g., muscles and brain, capillaries seem to be organized so as to minimize the zonation effect of the longitudinal capillary gradients, since adjacent parallel capillaries are perfused in opposite directions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rappaport, A. M., 1980, Hepatic blood flow: Morphologic aspects and physiologic regulation, in: Liver and Biliary Tract Physiology I, Vol. 21 (N. B. Javitt, ed.), pp. 1–63, Int. Rev. Physiol., University Park Press, Baltimore.

    Google Scholar 

  2. Jungermann, K., and Katz, N., 1982, Functional hepatocellular heterogeneity, Hepatology 2(3): 385–395.

    Article  PubMed  CAS  Google Scholar 

  3. Quistorff, B., 1983, The use of a hepatocyte column in the study of metabolic zonation in the liver, in: Isolation, Characterization, and Use of Hepatocytes (R. A. Harris and N. W. Cornell, eds.), pp. 131–137, Elsevier, New York.

    Google Scholar 

  4. Quistorff, B., Grunnet, N., and Cornell, N. W., 1985, Digitonin perfusion of rat liver: A new approach in the study of intraacinar and intracellular compartmentation in the liver, Biochem. J. 226: 289–297.

    PubMed  CAS  Google Scholar 

  5. Quistorff, B., 1985, Gluconeogenesis in periportal and perivenous hepatocytes of rat liver, isolated by a new high-yield, digitonin-collagenase perfusion technique, Biochem. J. 229: 221–226.

    PubMed  CAS  Google Scholar 

  6. Haselgrove, J. C., Subramanian, V. H., Leigh, J. S., Jr., Gyulai, L., and Chance, B., 1983, In vivo one-dimensional imaging of phosphorus metabolites by phosphorus-31 nuclear magnetic resonance, Science 220: 1170–1173.

    Article  PubMed  CAS  Google Scholar 

  7. Quistorff, B., and Chance, B., 1977, Two-and three dimensional analysis on brain oxygen delivery, in: Oxygen and Physiological Function (F. F. Jöbsis, ed.), pp. 100-110, Professional Information Library, Dallas.

    Google Scholar 

  8. Quistorff, B., Haselgrove, J. C., and Chance, B., 1985, High spatial resolution read-out of 3-D metabolic organ structure: An automated, low-temperature redox ratio scanning instrument, Anal. Biochem. 148: 389–400.

    Article  PubMed  CAS  Google Scholar 

  9. Williamson, D. H., Lund, P., and Krebs, H. A. 1967, The redox state of free nicotinamide-adenine dinucleotide in the cytoplasm and mitochondria of rat liver, Biochem. J. 103: 514–527.

    PubMed  CAS  Google Scholar 

  10. Sies, H., 1982, Nicotinamide nucleotide compartmentation, in: Metabolic Compartmentation (H. Sies, ed.), pp. 205–231, Academic Press, London.

    Google Scholar 

  11. Bücher, T., Brauser, B., Conze, A., Klein, F., Langguth, O., and Sies, H., 1972, State of oxidation-reduction and state of binding in cytosolic NADH-systems as disclosed by equilibration with extracellular lactate/pyruvate in hemoglobin-free perfused rat liver, Eur. J. Biochem. 27: 301–317.

    Article  PubMed  Google Scholar 

  12. Sies, H., 1977, Redox compartmentation: A survey with emphasis on current problems, in: Alcohol and Aldehyde Metabolizing Systems, Vol. 3 (R. G. Thurman, J. R. Williamson, H. Drott, and B. Chance, eds.), pp. 47–64, Academic Press, New York.

    Google Scholar 

  13. Krebs, H. A., 1966, The redox state of NAD in the cytoplasm and mitochondria of rat liver, Adv. Enzyme. Regul. 5: 409–437.

    Article  Google Scholar 

  14. Hoek, J. B., and Ernster, L., 1974, Mitochondrial transhydrogenase and the regulation of cytosolic reducing power, in: Alcohol and Aldehyde Metabolizing Systems, Vol. 1 (R. G. Thurman, Y. Yonetani, J. R. Williamson, and B. Chance, eds.), pp. 351–364. Academic Press, London.

    Google Scholar 

  15. Chance, B., and Jöbsis, F. F., 1959, Changes in fluorescence in a frog sartorius muscle following a twitch, Nature (London) 4681: 195–197.

    Article  Google Scholar 

  16. Chance, B., Cohen, P., Jöbsis, F. F., and Schoener, B., 1962, Intracellular oxidation-reduction states in vivo, Science 137: 449–508.

    Article  Google Scholar 

  17. Ramirez, J., and Vega, J., 1965, Cambios de la fluorescencia del musculo cardiaco durante la actividad mecanica, Acta Physiol. Lat. Am. 15: 239–240.

    Google Scholar 

  18. Welsh, F. A., O’Connor, M. J., and Langfitt, T. W., 1977, Regions of cerebral ischemia located by pyridine nucleotide fluorescence, Science 198: 951–953.

    Article  PubMed  CAS  Google Scholar 

  19. Barlow, C. H., and Chance, B., 1967, Ischemic areas in perfused rat hearts: Measurement by NADH fluorescence photography, Science 193: 909–910.

    Article  Google Scholar 

  20. Chance, B., Schoener, B., Krejci, K., Rüssmann, W., Wessmann, W., Schnitger, H., and Bücher, T., 1965, Kinetics of fluorescence and metabolite changes in rat liver during a cycle of ischaemia, Biochem. Z. 341: 325–333.

    CAS  Google Scholar 

  21. Chance, B., and Schoener, B., 1966, Fluorometric studies of flavin component of the respiratory chain, in: Flavins and Flavoproteins (E. C. Slater, ed.), pp. 510–519, Elsevier, Amsterdam.

    Google Scholar 

  22. Hassinen, I., and Chance, B., 1968, Oxidation-reduction properties of the mitochondrial flavoprotein chain, Biochem. Biophys. Res. Commun. 31(6): 895–900.

    Article  PubMed  CAS  Google Scholar 

  23. Chance, B., Mela, L., and Wong, D., 1968, Flavoproteins of the respiratory chain, in: Flavins and Flavoproteins, (K. Yagi, ed.), pp. 107–121, University Park Press, Baltimore.

    Google Scholar 

  24. Scholz, R., Thurman, R. G., Williamson, J. R., Chance, B., and Bücher, T., 1969, Flavin and pyridine nucleotide oxydation-reduction changes in perfused rat liver: Anoxia and sub-cellular localization of fluorescent flavoproteins, J. Biol. Chem. 244(9): 2317–2324.

    PubMed  CAS  Google Scholar 

  25. Chance, B., Schoener, B., Oshino, R., Itshak, F., and Nakase, Y., 1979, Oxidation-reduction ratio studies of mitochondria in freeze-trapped samples, J. Biol. Chem. 254: 4764–4771.

    PubMed  CAS  Google Scholar 

  26. Chance, B., Williamson, J. R., Jamieson, D., and Schoener, B., 1965, Properties and kinetics of reduced pyridine nucleotide fluorescence of the isolated in vivo rat heart, Biochem. Z. 341: 357–377.

    Google Scholar 

  27. Sies, H., Häussinger, D., and Grosskopf, M., 1974, Mitochondrial nicotinamide nucleotide systems: Ammonium chloride responses in hemoglobin-free perfused liver, Hoppe-Seyler’s Z. Physiol. Chem. 355: 305–320.

    Article  PubMed  CAS  Google Scholar 

  28. Avi-Dor, Y., Olson, J. M., Doherty, M. D., and Kaplan, N. O., 1962, Fluorescence of pyridine nucleotides in mitochondria, J. Biol. Chem. 237(7): 2377–2383.

    CAS  Google Scholar 

  29. Boyer, P. D., and Theorell, H., 1956, The changes in reduced NAD (NADH) fluorescence upon combination with liver ADH, Acta Chem. Scand. 10: 447–450.

    Article  CAS  Google Scholar 

  30. Velick, S. F., 1958, Fluorescence spectra and polarization of glyceraldehyde-3-P-and lactic dehydrogenase coenzyme complexes, J. Biol. Chem. 233(6): 1455–1467.

    CAS  Google Scholar 

  31. Chance, B., and Baltschefsky, H., 1958, Respiratory enzymes in oxidative phosphorylation. VII. Binding of intramitochondrial reduced NAD(P), J. Biol. Chem. 233(3): 736–739.

    PubMed  CAS  Google Scholar 

  32. Galeotti, T., Rossum, D. V. van, Mayer, D. H., and Chance, B., 1970, On the fluorescence of NAD(P)H in whole cell preparation of tumours and normal tissues, Eur. J. Biochem. 17: 485–496.

    Article  PubMed  CAS  Google Scholar 

  33. Thorell, B., and Chance, B., 1960, Microspectrography of respiratory enzymes within the single cell under different metabolic conditions, Exp. Cell Res. 20: 43–55.

    Article  PubMed  CAS  Google Scholar 

  34. Jöbsis, F. F., and Duffield, J. C., 1967, Oxidative and glycolytic recovery metabolism in muscle, J. Gen. Physiol. 50: 10109–1047.

    Article  Google Scholar 

  35. Chapman, J. B., 1972, Fluorometric studies of oxidative metabolism in isolated papillary muscle of the rabbit, J. Gen. Physiol. 59: 135–154.

    Article  PubMed  CAS  Google Scholar 

  36. Williamson, J. R., 1965, Glycolytic control mechanisms, J. Biol. Chem. 240: 2308–2318.

    PubMed  CAS  Google Scholar 

  37. O’Connor, M. J., Welsh, F., Komarnicky, L., Davis, T., Stevens, J., Lewis, D., and Herman, C., 1977, Origin of labile NADH tissue fluorescence, in: Oxygen and Physiological Function (F. F. Jöbsis, ed.), pp. 90-99, Professional Information Library, Dallas.

    Google Scholar 

  38. Aubert, X., Chance, B., and Keynes, R. D., 1964, Optical studies of biochemical events in the electric organ of Electrophorus, Proc. R. Soc. London Ser. B. 160: 211–233.

    Article  CAS  Google Scholar 

  39. Haselgrove, J. C., Barlow, C. H., and Chance, B., 1980, The 3-D distribution of metabolic states in the gerbil brain during the course of spreading depression, in: Cerebral Metabolism and Neuronal Function (J. V. Passonneau, R. A. Hawkins, W. D. Lust, and F. A. Welsh, eds.), pp. 72–76, Williams & Wilkins, Baltimore.

    Google Scholar 

  40. Quistorff, B., and Chance, B., 1982, 3-Dimensional recording of metabolic structure of rat liver: Evidence for a dynamic spatial ordering of liver metabolism, in: Alcohol and Alcohol Metabolism: First Symposium on Alcohol (J. Wadstein, ed.), pp. 21–39, Ferrosan, Malmö, Sweden.

    Google Scholar 

  41. Chance, B., and Quistorff, B., 1978, Study of tissue oxygen gradients by single and multiple indicators, in: Oxygen Transport to Tissue — III (I. A. Silver, M. Erecinska, and H. I. Bicher, eds.), pp. 331–338, Plenum Press, New York.

    Google Scholar 

  42. Erecinska, M., and Chance, B., 1972, Studies on the electron transport chain at subzero temperatures: Electron transport at site III. Arch. Biochem. Biophys. 151: 304–315.

    Article  PubMed  CAS  Google Scholar 

  43. Chance, B., and Williams, G. R., 1957, The respiratory chain and oxidative phosphorylation, Methods Enzymol. 17: 65–134.

    Google Scholar 

  44. Quistorff, B., and Chance, B., 1980, Simple techniques for freeze-clamping and for cutting and milling frozen tissue at low temperature for the purpose of two-or three-dimensional metabolic studies in vivo, Anal. Biochem. 108: 237–248.

    Article  PubMed  CAS  Google Scholar 

  45. Ji, S., Chance, B., Nishiki, K., Smith, T., and Rich, T., 1979, Micro-light guide: A new method for measuring tissue fluorescence and reflectance, Am. J. Physiol. 236: C144–C156.

    PubMed  CAS  Google Scholar 

  46. Chance, B., Legallais, V., Sorge, J., and Graham, N., 1975, A versatile time-sharing multichannel spectrophotometer, reflectometer, and fluorometer, Anal. Biochem. 66: 498–514.

    Article  PubMed  CAS  Google Scholar 

  47. Quistorff, B., 1980, Guillotine freeze-clamping of rat brain: Analysis of energy metabolites along the freezing gradient, in: Cerebral Metabolism and Neuronal Function (J. V. Passonneau, R. A. Hawkins, W. D. Lust, and F. A. Welsh, eds.), pp.42–52, Williams & Wilkins, Baltimore.

    Google Scholar 

  48. Quistorff, B., and Poulsen, H., 1980, Evaluation of a freeze-clamping technique designed for two-and three-dimensional metabolic studies of rat liver in vivo: Quenching efficiency and effect of clamping on tissue morphology, Anal. Biochem. 108: 249–256.

    Article  PubMed  CAS  Google Scholar 

  49. Williamson, J. R., Scholtz, R., Browning, E. T., Thurman, R. G., and Fukami, M. H., 1969, Metabolic effects of ethanol in the perfused liver, J. Biol. Chem. 244(18): 5044–5054.

    PubMed  CAS  Google Scholar 

  50. Quistorff, B., and Chance, B., 1977, Three-dimensional mapping of metabolic state of rat liver: Effects of high and low alcohol concentrations, Hoppe-Seyler’s Z. Physiol. Chem. 358: 1261.

    Google Scholar 

  51. Häussinger, D., 1983, Hepatocyte heterogeneity in glutamine and ammonia metabolism and the role of an intracellular glutamine cycle during ureogenesis in perfused rat liver, Eur. J. Biochem. 133: 269–275.

    Article  PubMed  Google Scholar 

  52. Kashiwagi, T., Ji, S., Lemasters, J. J., and Thurman, R. G., 1981, Rates of alcohol dehy-drogenase-dependent ethanol metabolism in periportal and pericentral regions of the perfused rat liver, Mol. Pharmacol. 21: 438–443.

    Google Scholar 

  53. Ji, S., Lemasters, J. J., and Thurman, R. G., 1980, A non-invasive method to study metabolic events within sublobular regions of hemoglobin-free perfused liver, FEBS Lett. 113(1): 37–41.

    Article  PubMed  CAS  Google Scholar 

  54. Jöbsis, F. F., and Lamanna, J. C., 1978, Kinetic aspects of intracellular redox reactions, in: Extrapulmonary Manifestations of Respiratory Disease (E. Robin, ed.), pp. 63–106, Marcel Dekker, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Plenum Press, New York

About this chapter

Cite this chapter

Quistorff, B., Chance, B. (1986). Redox Scanning in the Study of Metabolic Zonation of Liver. In: Thurman, R.G., Kauffman, F.C., Jungermann, K. (eds) Regulation of Hepatic Metabolism. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5041-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5041-5_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5043-9

  • Online ISBN: 978-1-4684-5041-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics