Skip to main content

Quantitative Histochemical Measurements within Sublobular Zones of the Liver Lobule

  • Chapter

Abstract

It is well established that parenchymal cells in different zones of the hepatic lobule differ in function, biochemical properties, and susceptibility to hepato-toxins.1–3 The experimental approaches that have been used most extensively over the years to describe the biochemical heterogeneity of the liver lobule are classic microscopic histochemistry and quantitative histochemistry. The object of this chapter is to describe the latter approach and illustrate its application to analyses of selected substrates and enzyme activites in microdissected samples from specific zones of the liver lobule. Methods of high specificity and sensitivity are required for such analyses because the number of cells that can be obtained conveniently from specific zones of the liver lobule range in number from about 100 to 500 depending on the age and species of animal studied. The average mass of a rat liver cell is estimated to be on the order of 1 × 10-9 g. Thus, an intermediate such as ATP, which is estimated to be about 5 mmoles/kg wet weight liver, would be about 5 × 10-15 mole/cell or about 0.5–2.5 × 10-12 mole/microdissected sample. Although this amount of substrate is below the range detected by conventional biochemical analytical techniques, this level of substrate can be measured conveniently via pyridine-nucleotide-dependent enzymatic cycling assays4,5 and some bioluminescence assays.6,7 Each of these types of analyses can be applied to specimens obtained by quantitative histo-chemical sampling procedures.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gumucio, J. J., and Miller, D. L., 1981, Functional implications of liver cell heterogeneity, Gastroenterology 80: 393–403.

    PubMed  CAS  Google Scholar 

  2. Jungermann, K. K., and Katz, N., 1985, Metabolism of carbohydrate, in: Regulation of Hepatic Metabolism: Intra-and Intercellular Compartmentation (R. G. Thurman, F. C. Kauffman, and K. Jungermann, eds.), Chapter 9, Plenum Press, New York.

    Google Scholar 

  3. Jungermann, K., and Sasse, D., 1978, Heterogeneity of liver parenchymal cell, Trends Biochem Sci. 3: 198–202.

    Article  CAS  Google Scholar 

  4. Lowry, O. H., Passonneau, J. V., Schulz, D. W., and Rock, M. K., 1961, The measurement of pyridine nucleotides by enzymatic cycling, J. Biol. Chem. 236: 2746–2755.

    PubMed  CAS  Google Scholar 

  5. Lowry, O. H., and Passonneau, J. V., 1972, A Flexible System of Enzymatic Analysis, Academic Press, New York.

    Google Scholar 

  6. Lundin, A., Rickardsson, A., and Thore, A., 1976, Continuous monitoring of ATP-converting reactions by purified firefly luciferase, Anal. Biochem. 75: 611–620.

    Article  PubMed  CAS  Google Scholar 

  7. Lust, W. D., Feussner, G. K., Barbehenn, E. K., and Passonneau, J. V., 1981, The enzymatic measurement of adenine nucleotides and P-creatine in picomole amounts, Anal. Biochem. 110: 258–266.

    Article  PubMed  CAS  Google Scholar 

  8. Holter, H., and Linderstrom-Lang, K., 1935, The distribution of pepsin in the gastric mucosa of pigs, C. R. Lab. Carlsberg Ser. Chim. 20: 1–32.

    Google Scholar 

  9. Anfinsen, C. B., Lowry, O. H., and Hastings, A. B., 1942, The application of the freeze-drying technique to retinal histochemistry, J. Cell. Comp. Physiol. 20: 231–237.

    Article  Google Scholar 

  10. Lowry, O. H., 1944, A simple quartz torsion balance, J. Biol. Chem. 152: 293–294.

    CAS  Google Scholar 

  11. Anfinsen, C. B., 1944, The distribution of cholinesterase in the bovine retina, J. Biol. Chem. 152: 267–278.

    CAS  Google Scholar 

  12. Anfinsen, C. B., 1944, The distribution of diphosphopyridine nucleotide in the bovine retina, J. Biol. Chem. 152: 274–284.

    Google Scholar 

  13. Lowry, O. H., 1975, Quantitative histochemistry, in: The Nervous System, Vol. 1, (D. B. Tower, ed.), pp. 523–533, Raven Press, New York.

    Google Scholar 

  14. Lowry, O. H., 1973, An unlimited microanalytical system, Acc. Chem. Res. 6: 289–293.

    Article  CAS  Google Scholar 

  15. Morrison, G. R., Brock, F. E., Karl, I. E., and Shank, R. E., 1965, Quantitative analysis of regenerating and degenerating areas within the lobule of carbon tetrachloride-injured liver, Arch. Biochem. Biophys. 111: 448–460.

    Article  PubMed  CAS  Google Scholar 

  16. Ghosh, A. K., Finegold, D., White, W., Zawalich, K., and Matschinsky, F. M., 1982, Quantitative histochemical resolution of oxidation-reduction and phosphate potentials within the simple hepatic acinus, J. Biol. Chem. 257: 5476–5481.

    PubMed  CAS  Google Scholar 

  17. Wollenberger, A., Ristau, O., and Schoffa, G., 1960, A simple technique for extremely rapid freezing of large pieces of tissue, Pflügers Arch. 270: 399–412.

    Article  CAS  Google Scholar 

  18. Belinsky, S. A., Kauffman, F. C., Ji, S., Lemasters, J. J., and Thurman, R. G., 1983, Stimulation of mixed-function oxidation of 7-ethoxycoumarin in periportal and pericentral regions of the perfused rat liver by xylitol, Eur. J. Biochem. 137: 1–6.

    Article  PubMed  CAS  Google Scholar 

  19. Charest, R., Blackmore, P. F., Berthon, B., and Exton, J. H., 1983, Changes in free cytosolic Ca2+ in hepatocytes following α1-adrenergic stimulation: Studies on Quin-2 loaded hepatocytes, J. Biol. Chem. 258: 8769–8773.

    PubMed  CAS  Google Scholar 

  20. Ferrendelli, J. A., Gay, M. H., Sedgwick, W. G., and Chang, M. M., 1972, Quick freezing of the mouse central nervous system: Comparison of regional cooling rates and metabolite levels when using liquid nitrogen or Freon-12, J. Neurochem. 19: 979–987.

    Article  PubMed  CAS  Google Scholar 

  21. Welsh, F. A., 1972, Changes in distribution of enzymes within the liver lobule during adaptive increases, J. Histochem. Cytochem. 20: 107–111.

    Article  PubMed  CAS  Google Scholar 

  22. Loud, A. V., 1968, Quantitative stereological description of the ultrastructure of normal rat liver parenchymal cells, J. Cell Biol. 37: 27–46.

    Article  PubMed  CAS  Google Scholar 

  23. Lowry, O. H., 1953, The quantitative histochemistry of the brain: Histological sampling, J. Histochem. Cytochem. 1: 420–428.

    Article  PubMed  CAS  Google Scholar 

  24. Negelein, E., and Haas, E., 1935, Über die Wirkungsweise des Zwischenferment, Biochem. Z. 282: 206–220.

    CAS  Google Scholar 

  25. Greengard, D., 1956, Determination of intermediary metabolites by enzymatic fluorimetry, Nature (London) 178: 632–634.

    Article  CAS  Google Scholar 

  26. Lowry, O. H., Roberts, N. R., and Chang, M. L. W., 1956, The analysis of single cells, J. Biol. Chem. 222: 97–107.

    PubMed  CAS  Google Scholar 

  27. Lowry, O. H., Passonneau, J. V., and Rock, M. K., 1961, The stability of pyridine nucleotides, J. Biol. Chem. 236: 2756–2757.

    PubMed  CAS  Google Scholar 

  28. Kaplan, N. O., Colowick, S. P., and Barnes, C. C., 1951, Effect of alkali on diphosphopyridine nucleotide, J. Biol. Chem. 191: 461–472.

    PubMed  CAS  Google Scholar 

  29. Chi, M. M. Y., Lowry, C. V., and Lowry, O. H., 1978, An improved enzymatic cycle for nicotinamide-adenine dinucleotide phosphate, Anal. Biochem. 89: 119–129.

    Article  PubMed  CAS  Google Scholar 

  30. Kato, T., Berger, S. J., Carter, J. A., and Lowry, O. H., 1973, An enzymatic cycling method for nicotinamide-adenine dinucleotide with malic and alcohol dehydrogenases, Anal. Biochem. 53: 86–97.

    Article  PubMed  CAS  Google Scholar 

  31. Warburg, O., Christian, W., and Griese, A., 1935, Wasserstoffübertragendes C0-ferment; Seine Zusammensetzung und Wirkungsweise, Biochem. Z. 282: 157–205.

    CAS  Google Scholar 

  32. Breckenridge, B. M., 1964, The measurement of cyclic adenylate in tissues, Proc. Natl. Acad. Sci. U.S.A. 52: 1580–1586.

    Article  PubMed  CAS  Google Scholar 

  33. Goldberg, N. D., Larner, J., Sasko, H., and O’Toole, A. G., 1969, Enzymatic analysis of cyclic 3′, 5′-AMP in mammalian tissues and urine, Anal. Biochem. 28: 523–544.

    Article  PubMed  CAS  Google Scholar 

  34. DeLuca, M. A., 1978, Bioluminescence and Chemiluminescence, Academic Press, New York, San Francisco, and London.

    Google Scholar 

  35. Strehler, B. L., and Totter, J. R., 1952, Firefly luminescence in the study of energy transfer mechanisms. I. Substrate and enzyme determination, Arch Biochem. Biophys. 40: 28–41.

    Article  PubMed  CAS  Google Scholar 

  36. Kimmich, G. A., Randies, J., and Brand, J. S., 1975, Assay of picomole amounts of ATP, ADP and AMP using the luciferase enzyme system, Anal. Biochem. 69: 187–206.

    Article  PubMed  CAS  Google Scholar 

  37. McElroy, W. D., 1947, The energy source for bioluminescence in an isolated system, Proc. Natl. Acad. Sci. U.S.A. 33: 342–345.

    Article  PubMed  CAS  Google Scholar 

  38. Sinicropi, D. V., Dombrowski, A., Montgomery, C. W., Evans, R. K., and Kauffman, F. C., 1980, Maintenance of the adult rat superior cervical ganglion in vitro: Comparison of organ and expiant culture systems, J. Neurochem. 34: 1280–1287.

    Article  PubMed  CAS  Google Scholar 

  39. Lienhard, G. E., and Secemski, I. I., 1973, P1, P5-Di(adenosine-5′)pentaphosphate, a potent multisubstrate inhibitor of adenylate kinase, J. Biol. Chem. 248: 1121–1123.

    PubMed  CAS  Google Scholar 

  40. Matthews, J. C., and Cormier, M. J., 1978, Rapid microassay for the calcium-dependent protein modulator of cyclic nucleotide phosphodiesterase, Methods Enzymol. 57: 107–112.

    Article  CAS  Google Scholar 

  41. Hastings, J. W., 1978, A sensitive kinetic assay for glycerol using bacterial bioluminescence, Anal. Biochem. 139: 510–515.

    Google Scholar 

  42. Wienhausen, G., and De Luca, M. A., 1982, Bioluminescent assays of picomole levels of various metabolites using immobilized enzymes, Anal. Biochem. 127: 380–388.

    Article  PubMed  CAS  Google Scholar 

  43. Palmisano, J., and Schwartz, J. H., 1982, Microasays for glucose-6-phosphate and 6-phos-phogluconate based on bioluminescent techniques, Anal. Biochem. 126: 409–413.

    Article  PubMed  CAS  Google Scholar 

  44. Kather, H., and Wieland, E., 1984, Bioluminescent determination of free fatty acids, Anal. Biochem. 140: 349–353.

    Article  PubMed  CAS  Google Scholar 

  45. Lavi, J. T., 1984, A sensitive kinetic assay for glycerol using bacterial bioluminescence, Anal. Biochem. 139: 510–515.

    Article  PubMed  CAS  Google Scholar 

  46. Austin, L., Lowry, O. H., Brown, J. G., and Carter, J. C., 1972, The turnover of protein in discrete areas of rat brain, Biochem. J. 126: 351–359.

    PubMed  CAS  Google Scholar 

  47. Bedoya, F., Meglasson, M., Wilson, J., and Matschinsky, F., 1985, Radiometric oil well assay for glucokinase in microscopic structures, Anal. Biochem. 144: 504–513.

    Article  PubMed  CAS  Google Scholar 

  48. Trus, M., and Matschinsky, F. M., 1980, Hexokinase and glucokinase distribution in the liver lobule, J. Histochem. Cytochem. 28: 579–591.

    Article  PubMed  CAS  Google Scholar 

  49. Matschinsky, F. M., Passonneau, J. V., and Lowry, O. H., 1968, Quantitative histochemical analysis of glycolytic intermediates and cofactors with an oil well technique, J. Histochem. Cytochem. 16: 29–39.

    Article  PubMed  CAS  Google Scholar 

  50. Steiner, A. L., 1974, Assay of cyclic nucleotides by radioimmunoassay methods, Methods Enzymol. 38: 96–105.

    Article  PubMed  CAS  Google Scholar 

  51. Rubin, E. H., and Ferrendelli, J. A., 1977, Distribution and regulation of cyclic nucleotide levels in cerebellum, in vivo, J. Neurochem. 29: 43–51.

    Article  PubMed  CAS  Google Scholar 

  52. Godfrey, D. A., Hallcher, L. M., Laird, M. M., Matschinsky, F. M., and Sherman, W. H., 1982, Distribution of myoinositol in the cat cochlear nucleus, J. Neurochem. 38: 939–947.

    Article  PubMed  CAS  Google Scholar 

  53. MacGregor, L. C., and Matschinsky, F. M., 1984, An enzymatic fluorimetric assay for myoinositol, Anal. Biochem. 141: 382–389.

    Article  PubMed  CAS  Google Scholar 

  54. MacGregor, L., and Matschinsky, F. M., 1985, In preparation.

    Google Scholar 

  55. Sussman, I., MacGregor, L., and Matschinsky, F. M., 1985, In preparation.

    Google Scholar 

  56. Somlyo, A. P., Somlyo, A. V., and Shuman, H., 1979, Electron probe analysis of vascular smooth muscle: Composition of mitochondria, nuclei and cytoplasm, J. Cell Biol. 81: 316–335.

    Article  PubMed  CAS  Google Scholar 

  57. Somlyo, A. V., Gonzalez-Serratos, H. Shuman, H., McClellan, G., and Somlyo, A. P., 1980, Calcium release and ionic changes in the sarcoplasmic reticulum of tetanized muscle: An electron probe study, J. Cell Biol. 90: 577–594.

    Article  Google Scholar 

  58. Jungermann, K., and Katz, N., 1982, Functional hepatocellular heterogeneity, Hepatology 2: 385–395.

    Article  PubMed  CAS  Google Scholar 

  59. Shank, R. E., Morrison, G., Cheng, C. H., Karl, I., and Schwartz, R., 1959, Cell heterogeneity within the hepatic lobule (quantitative histochemistry), J. Histochem. Cytochem. 7: 237–239.

    Article  PubMed  CAS  Google Scholar 

  60. McDonald, B. E., and Johnson, B. C., 1965, Metabolic response to realimentation following chronic starvation in the adult male rat, J. Nutr. 87: 161–167.

    PubMed  CAS  Google Scholar 

  61. Tsukuda, T., Thurman, R. G., and Kauffman, F. C., 1983, Effect of inducing agents on the distribution and kinetic properties of UPD-glucuronosyl transferase in periportal and pericentral zones of the liver, Fed. Proc. Fed. Am. Soc. Exp. Biol. 42: 912.

    Google Scholar 

  62. Sokolove, P. M., Wilcox, M. A., Thurman, R. G., and Kauffman, F. C., 1984, Stimulation of hepatic microsomal β-glucuronidase by calcium, Biochem. Biophys. Res. Commun. 121: 987–993.

    Article  PubMed  CAS  Google Scholar 

  63. Ullrich, D., Fischer, G., Katz, N., and Bock, K. W., 1984, Intralobular distribution of UDP-glucuronosyltransferase in livers from untreated, 3-methylcholanthrene-and phenobarbital-treated rats, Chem.-Biol. Interact. 48: 181–190.

    Article  PubMed  CAS  Google Scholar 

  64. Jungermann, K., Heilbronn, R., Katz, N., and Sasse, D., 1982, The glucose/glucose-6-phos-phate cycle in the periportal and perivenous zone of rat liver, Eur. J. Biochem. 123: 429–436.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Plenum Press, New York

About this chapter

Cite this chapter

Kauffman, F.C., Matschinsky, F.M. (1986). Quantitative Histochemical Measurements within Sublobular Zones of the Liver Lobule. In: Thurman, R.G., Kauffman, F.C., Jungermann, K. (eds) Regulation of Hepatic Metabolism. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5041-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5041-5_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5043-9

  • Online ISBN: 978-1-4684-5041-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics