Skip to main content

Lobular Oxygen Gradients: Possible Role in Alcohol-Induced Hepatotoxicity

  • Chapter
Regulation of Hepatic Metabolism

Abstract

Alcoholic liver disease is a major health problem, and specific therapies are lacking because we still do not understand how alcohol causes liver damage. The purpose of this chapter is to evaluate the evidence for and against the hypothesis that hypoxia is involved in this disease. We shall review hepatic oxygen uptake, ethanol metabolism and adaptations, and hypoxic tissue damage in general briefly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Thurman, R. G., and Scholz, R., 1969, Mixed-function oxidation in perfused rat liver: The effect of aminopyrine on oxygen uptake, Eur. J. Biochem. 10: 459–467.

    Article  PubMed  CAS  Google Scholar 

  2. Mitchell, P., 1966, Chemiosmotic coupling in oxidative and photosynthetic phosphorylation, Biol. Rev. 41: 445–502.

    Article  PubMed  CAS  Google Scholar 

  3. Schneider, H., Lemasters, J. J., Höchli, M., and Hackenbrock, C. R., 1980, Lipo-some-mitochondrial inner membrane fusion: Lateral diffusion of integral electron transfer components, J. Biol. Chem. 255: 3748–3756.

    PubMed  CAS  Google Scholar 

  4. Chance, B., and Williams, G. R., 1955, Respiratory enzymes in oxidative phosphrylation I-V, J. Biol. Chem. 217: 383–438.

    PubMed  CAS  Google Scholar 

  5. Boyer, P. D., Chance, B., Ernst, L., Mitchell, P., Racker, E., and Slater, E. C., 1977, Oxidative phosphorylation and photophorylation, Annu. Rev. Biochem. 46: 955–1026.

    Article  PubMed  CAS  Google Scholar 

  6. Lemasters, J. J., 1985, The ATP/oxygen and ATP/site ratios of oxidative phosphorylation: An analysis by nonequilibrium thermodynamics, Comments Molec. Cell. Biophysics (in press).

    Google Scholar 

  7. Grunwald, R., and Lemasters, J. J., 1982, Rate-limitation of mitochondrial oxidative phosphorylation, EBEC Short Rep. 2: 269–270.

    Google Scholar 

  8. Groen, A. K., Wanders, R. J., Westerhoff, H. V., van der Meer, R., and Tager, J. M., 1982, Quantification of the contribution of various steps to the control of mitochondrial respiration, J. Biol. Chem. 257: 2754–2757.

    PubMed  CAS  Google Scholar 

  9. Theorell, H., and Chance, B., 1951, Studies on liver alcohol dehydrogenase. II. The kinetics of the compound of horse liver alcohol dehydrogenase and reduced diphosphopyridine nu-cleotide, Acta Chem. Scand. 5: 1127–1144.

    Article  CAS  Google Scholar 

  10. Brändén, E.-I., Eklund, H., Zeppezauer, E., Nordström, B., Bowie, J., Söderland, G., and Ohlsson, I., 1974, Three-dimensional structure of the horse liver alcohol dehydrogenase molecule, in: Alcohol and Aldehyde Metabolizing Systems (R. G. Thurman, T. Yonetani, J. R. Williamson, and B. Chance, eds.), pp. 7–21, Academic Press, New York.

    Google Scholar 

  11. Williamson, J. R., Scholz, R., Thurman, R. G., and Chance, B., 1969, Transport of reducing equivalents across the mitochondrial membrane in rat liver, in: The Energy Level and Metabolic Control in Mitochondria (S. Papa, J. M. Tager, E. Quagliariello, and E. C. Slater, eds.), pp. 411–429, Adriatica Editrice, Bari.

    Google Scholar 

  12. Theorell, H., Nygaard, A. P., and Bonnichsen, R., 1969, On the effect of some heterocyclic compounds on the enzymatic activity of liver alcohol dehydrogenase, Acta Chem. Scand. 23: 255.

    Article  PubMed  CAS  Google Scholar 

  13. Thurman, R. G., McKenna, W. R., Brentzel, H. J. and Hesse, S., 1975, Significant pathways of hepatic ethanol metabolism, Fed. Proc. Fed. Am. Soc. Exp. Biol. 34: 2075–2081.

    CAS  Google Scholar 

  14. Madison, L., Lochner, A., and Wolff, J., 1967, Ethanol-induced hypoglycemia. II. Mechanism of suppression of hepatic gluconeogenesis, Diabetes 16: 252–258.

    PubMed  CAS  Google Scholar 

  15. Videla, L., and Israel, Y., 1970, Factors that modify the metabolism of ethanol in rat liver and adaptive changes produced by its chronic administration, Biochem. J. 118: 275–281.

    PubMed  CAS  Google Scholar 

  16. Williamson, J. R., Scholz, R., Browning, E. T., Thurman, R. G., and Fukami, M. H., 1969, Control mechanisms of gluconeogenesis and ketogenesis. III. Metabolic effects in perfused rat liver, J. Biol. Chem. 244: 5044.

    PubMed  CAS  Google Scholar 

  17. Scholz, R., and Nohl, H., 1976, Mechanism of the stimulatory effect of fructose on ethanol oxidation in perfused rat liver, Eur. J. Biochem. 63: 449–458.

    Article  PubMed  CAS  Google Scholar 

  18. Lumeng, L., Bosron, W. F., and Li, T.-K., 1979, Quantitative correlation of ethanol elimination rates in vivo with liver alcohol dehydrogenase activities in fed, fasted and food-restricted rats, Biochem. Pharmacol. 28: 1547–1551.

    Article  PubMed  CAS  Google Scholar 

  19. von Wartburg, J. P., and Scharch, P. M., 1968, Atypical human liver alcohol dehydrogenase, Ann. N. Y. Acad. Sci. 151: 936.

    Google Scholar 

  20. von Wartburg, J. P., 1971, The metabolism of alcohol in normals and alcoholics: Enzymes, in: The Biology of Alcoholism, Vol. 1 (B. Kissin and H. Begleiter, eds.), pp. 63–102, Plenum Press, New York.

    Google Scholar 

  21. Goebell, H., and Bode, C., 1971, Influence of ethanol and protein deficiency on the activity of alcohol dehydrogenase in the rat liver, in: Metabolic Changes Induced by Alcohol (G. A. Martini and C. Bode, eds.), pp. 23–31, Springer-Verlag, Berlin.

    Chapter  Google Scholar 

  22. Rachamin, G., MacDonald, J. A., Wahid, S., Clapp, J. L., Khanna, J. M., and Israel, Y., 1980, Modulation of alcohol dehydrogenase and ethanol metabolism by sex hormones in the spontaneously hypertensive rat, Biochem. J. 186: 483–490.

    PubMed  CAS  Google Scholar 

  23. Meijer, A. J., Van Woerkom, T. C., Williamson, J. R., and Tager, J. M., 1975, Rate-limiting factors in the oxidation of ethanol by rat liver cells, Biochem. J. 150: 205–209.

    PubMed  CAS  Google Scholar 

  24. Thurman, R. G., and Scholz, R., 1975, Effect of octanoate on ethanol metabolism, Fed. Proc. Fed. Am. Soc. Exp. Biol. 34: 634.

    Google Scholar 

  25. DeDuve, C., and Baudhuin, P., 1966, Peroxisomes (microbodies and related particles), Physiol. Rev. 46: 323–357.

    CAS  Google Scholar 

  26. Thurman, R. G., and Chance, B., 1969, Inhibition of catalase in perfused rat liver by sodium azide, Ann. N. Y. Acad. Sci. 168: 348–353.

    Article  PubMed  CAS  Google Scholar 

  27. Sies, H., and Chance, B., 1970, The steady state level of catalase compound I in isolated hemoglobin-free perfused rat liver, FEBS Lett. 11: 172–176.

    Article  PubMed  CAS  Google Scholar 

  28. Oshino, N., Chance, B., Sies, H., and Bücher, T., 1973, The role of H2O2 generation in perfused rat liver and the reaction of catalase compound I and hydrogen donors, Arch. Biochem. Biophys. 154: 117–131.

    Article  PubMed  CAS  Google Scholar 

  29. Chance, B., and Oshino, N., 1971, Kinetics and mechanisms of catalase in peroxisomes of the mitochondrial fraction, Biochem. J. 122: 225–233.

    PubMed  CAS  Google Scholar 

  30. Nichols, P., and Schonbaum, G. R., 1963, Catalases, in: The Enzymes, 2nd ed. (P. D. Boyer, H. A. Lardy, and K. Myrback, eds.), pp. 147–225, Academic Press, New York.

    Google Scholar 

  31. Shore, J. D., and Theorell, H., 1966, A kinetic study of ternary complexes in the mechanism of action of liver alcohol dehydrogenases, Arch. Biochem. Biophys. 116: 255–260.

    Article  PubMed  CAS  Google Scholar 

  32. Orme-Johnson, W. H., and Ziegler, D. M., 1965, Alcohol mixed-function oxidase activity of mammalian liver microsomes, Biochem. Biophys. Res. Commun. 21: 78–84.

    Article  PubMed  CAS  Google Scholar 

  33. Imai, Y., and Sato, R., 1967, Studies on the substrate interactions with P-450 in drug hy-droxylation by liver microsomes, J. Biochem. (Tokyo) 62: 239–249.

    CAS  Google Scholar 

  34. Lieber, C. S., and DeCarli, L. M., 1970, Hepatic microsomal ethanol-oxidizing system in vitro: Characteristics and adaptive properties in vivo, J. Biol. Chem. 245: 2505–2512.

    PubMed  CAS  Google Scholar 

  35. Lieber, C. S., 1976, The metabolism of alcohol, Sci. Am. 234(3): 25–33.

    Article  PubMed  CAS  Google Scholar 

  36. Koop, D. R., Morgan, E. T., Tarr, G. E., and Coon, M. J., 1982, Purification and characterization of a unique isoenzyme of cytochrome P-450 from liver microsomes of ethanol-treated rabbits, J. Biol. Chem. 257: 13, 951–13, 957.

    Google Scholar 

  37. Thurman, R. G., Ley, H. G., and Scholz, R., 1972, Hepatic microsomal ethanol oxidation: Hydrogen peroxide formation and the role of catalase, Eur. J. Biochem. 25: 420–430.

    Article  PubMed  CAS  Google Scholar 

  38. Isselbacher, K. J., and Carter, E. A., 1970, Ethanol oxidation by liver microsomes: Evidence against a separate and distinct enzyme system, Biochem. Biophys. Res. Commun. 39: 530–537.

    Article  PubMed  CAS  Google Scholar 

  39. Burnett, K. G., and Felder, M. R., 1980, Ethanol metabolism in Peromyscus genetically deficient in alcohol dehydrogenase, Biochem. Pharmacol. 29: 125–130.

    Article  PubMed  CAS  Google Scholar 

  40. Hawkins, R., and Khanna, J. M., 1966, Effect of chronic intake of ethanol on rate of ethanol metabolism, Can. J. Physiol. Pharmacol. 44: 241–257.

    Article  CAS  Google Scholar 

  41. Mendelson, J., and Mello, N. K., 1966, Experimental analysis of drinking behavior of chronic alcoholics, Ann. N. Y. Acad. Sci. 133: 828–845.

    Article  PubMed  CAS  Google Scholar 

  42. Videla, L., Bernstein, J., and Israel, Y., 1973, Metabolic alteration produced in the liver by chronic alcohol administration: Increased oxidative capacity, Biochem. J. 134: 507–514.

    PubMed  CAS  Google Scholar 

  43. Thurman, R. G., McKenna, W. R., and McCaffrey, T. B., 1976, Pathways responsible for the adaptive increase in ethanol utilization following chronic treatment with ethanol: Inhibitor studies with the hemoglobin-free perfused rat liver, Mol. Pharmacol. 12: 156–166.

    PubMed  CAS  Google Scholar 

  44. Thurman, R. G., and Scholz, R., 1977, Interactions of glycolysis and respiration in perfused rat liver: Changes in O2 uptake following addition of ethanol, Eur. J. Biochem. 75: 13–21.

    Article  PubMed  CAS  Google Scholar 

  45. Iturriaga, H., Ugarte, G., and Israel, Y., 1980, Hepatic vein oxygenation, liver blood flow, and the rate of ethanol metabolism in recently abstinent alcoholic patients, Eur. J. Clin. Invest. 10: 211–218.

    Article  PubMed  CAS  Google Scholar 

  46. Yuki, T., and Thurman, R. G., 1980, Swift increase in alcohol metabolism: Time course and involvement of glycolysis, Biochem. J. 186: 119.

    PubMed  CAS  Google Scholar 

  47. Wendell, G. D., and Thurman, R. G., 1979, Effect of ethanol concentration on rates of ethanol elimination in normal and alcohol-treated rats in vivo, Biochem. Pharmacol. 28: 273–279.

    Article  PubMed  CAS  Google Scholar 

  48. Bernstein, J., Videla, L., and Israel, Y., 1974, Hormonal influences in the development of the hypermetabolic state of the liver produced by chronic administration of ethanol, J. Pharmacol. Exp. Ther. 192: 583–591.

    Google Scholar 

  49. Sutherland, E. W., Oye, I., and Butcher, R. W., 1965, The action of epinephrine and the role of the adenyl cyclase system in hormone action, Recent Prog. Horm. Res. 21: 623–646.

    PubMed  CAS  Google Scholar 

  50. Israel, Y., Videla, L., MacDonald, A., and Bernstein, J., 1973, Metabolic alterations produced in the liver by chronic alcohol administration. III. Comparison between the effects produced by ethanol and by thyroid hormones, Biochem. J. 134: 523–529.

    PubMed  CAS  Google Scholar 

  51. Yuki, T., Thurman, R. G., Schwabe, U., and Scholz, R., 1980, Metabolic changes after prior treatment with ethanol: Evidence against an involvement of the Na+ + K+-activated ATPase in the increase in ethanol metabolism, Biochem. J. 186: 997–1000.

    PubMed  CAS  Google Scholar 

  52. Rawat, A. K., and Lundquist, F., 1968, Influence of thyroxine on the metabolism of ethanol and glycerol in rat liver slices, Eur. J. Biochem. 5: 13–17.

    Article  PubMed  CAS  Google Scholar 

  53. Fleckenstein, A., Kammermeier, H., Döring, H., and Freund, H. J., 1967, Zum Wirkungsmechanismus neuartiger Koronardiktatoren mit gleichzeitig Sauerstoff-einsparenden Myokard-effekten, Prenylomin und Prorenatid, Z. Kreislaufforsch 56: 716–744 and 839-835.

    PubMed  CAS  Google Scholar 

  54. Peck, R. C., and Lefer, A. M., 1981, Protective effect of Nifedipine in the hypoxic perfused rat liver, Agents Actions 11: 421–424.

    Article  PubMed  CAS  Google Scholar 

  55. Trump, F. G., and Arstila, A. U., 1975, Cell members and disease processes, in: Pathobiology of Cell Membranes (F. G. Trump and A. U. Arstila, eds.), pp. 1–103, Academic Press, New York.

    Google Scholar 

  56. Farber, J. L., and Young, E. E., 1981, Accelerated phospholipid degradation in anoxic rat hepatocytes, Arch. Biochem. Biophys. 211: 312–320.

    Article  PubMed  CAS  Google Scholar 

  57. Jewell, S. A., Bellomo, G., Thor, H., Orrenius, S., and Smith, M. T., 1982, Bleb formation in hepatocytes during drug metabolism is caused by disturbances in thiol and calcium ion homeostatis, Science 207: 1257–1259.

    Article  Google Scholar 

  58. Poole-Wilson, P. A., Harding, D., Bourdillion, P., and Fleetwood, G., 1982, Mechanism of myocardial protection through Ca+ 2 blocade, in: Protection of Tissues against Hypoxia (A. Wauquier, ed.), pp. 351–364, Elsevier, Amsterdam.

    Google Scholar 

  59. Lemasters, J. J., Stemkowski, C. J., Ji, S., and Thurman, R. G., 1983, Cell surface changes and enzyme release during hypoxia and reoxygenation in the isolated, perfused rat liver, J. Cell Biol. 97: 778–786.

    Article  PubMed  CAS  Google Scholar 

  60. Krough, A., 1918, The number and distribution of capillaries in muscles with calculations of the oxygen pressure head necessary for supplying the tissue, J. Physiol. (London) 52: 409–415.

    Google Scholar 

  61. Kessler, M., Höper, J., Lübbers, D. W., and Ji, S., 1981, Local factors affecting regulation of microflow, O2 uptake and energy metabolism, Adv. Physiol. Sci. 25: 155–162.

    CAS  Google Scholar 

  62. Kessler, M., Höper, J., and Kramel, B. A., 1976, Tissue perfusion and cellular function, Anaesthesiol 45: 186–199.

    Article  Google Scholar 

  63. Chance, B., Mayevsky, A., Goodwin, C., and Mela, L., 1974, Factors in oxygen delivery to tissue, Microvasc. Res. 8: 276–282.

    Article  PubMed  CAS  Google Scholar 

  64. Chance, B., Cohen, P., Jöbsis, F., and Schoener, B., 1962, Intracellular oxidation-reduction states in vivo: The microfluorometry of pyridine nucleotide gives a continuous measurement of the oxidation state, Science 137: 1–10.

    Google Scholar 

  65. Chance, B., 1965, Reaction of oxygen with the respiratory chain in cells and tissues, Gen. Physiol. 49: 163–188.

    Article  CAS  Google Scholar 

  66. Chance, B., Barlow, C., Haselgrove, J., Nakase, Y., Quistorff, B., Matschinsky, F., and Mayevsky, A., 1978, Microheterogeneities of redox states of perfused and intact organs, in: Microenvironments and Metabolic Compartmentation (P. A. Srere and R. W. Estabrook, eds.), pp. 131–148, Academic Press, New York.

    Google Scholar 

  67. Matschinsky, F. M., Hintz, C. S., Reichlmeier, K., Quistorff, B., and Chance, B., 1978, The intralobular distribution of oxidized and reduced pyridine nucleotides in the liver of normal and diabetic rats, in: Microenvironments and Metabolic Compartmentation (P. A. Srere and R. W. Estabrook, eds.), pp. 149–166, Academic Press, New York.

    Google Scholar 

  68. Tamura, M., Oshino, N., Chance, B., and Silver, I., 1978, Optical measurements of intra-cellular oxygen concentration of rat heart in vivo, Arch. Biochem. Biophys. 191: 8–22.

    Article  PubMed  CAS  Google Scholar 

  69. Oshino, N., Jamieson, D., and Chance, B., 1975, Optical measurements of the cata-lase-hydrogen peroxide intermediate (compound I) in the liver of anaesthetized rats and its implication to hydrogen peroxide production in situ, Biochem. J. 146: 53–65.

    PubMed  CAS  Google Scholar 

  70. Sies, H., 1978, Cytochrome oxidase and urate oxidase as intracellular O2 indicators in studies of O2 gradients during hypoxia in liver, Adv. Exp. Med. Biol. 94: 561–566.

    Google Scholar 

  71. Jones, D. P., and Mason, H. S., 1978, Gradients of O2 concentration in hepatocytes, J. Biol. Chem. 253: 4874–4880.

    PubMed  CAS  Google Scholar 

  72. Israel, Y., Kalant, H., Orrego, H., Khanna, J. M., Videla, L., and Phillips, J. M., 1975, Experimental alcohol-induced hepatic necrosis: Suppression by propylthiouracil, Proc. Natl. Acad. Sci. U.S.A. 72: 1137–1141.

    Article  PubMed  CAS  Google Scholar 

  73. Ji, S., Lemasters, J. J., Christenson, V., and Thurman, R. G., 1982, Periportal and pericentral pyridine nucleotide fluorescence from the surface of the perfused liver: Evaluation of the hypothesis that chronic treatment with ethanol produces pericentral hypoxia, Proc. Natl. Acad. Sci. U.S.A. 79: 5415–5419.

    Article  PubMed  CAS  Google Scholar 

  74. Lemasters, J. J., Ji, S., and Thurman, R. G., 1981, Centrilobular injury following hypoxia in isolated, perfused rat liver, Science 213: 661–663.

    Article  PubMed  CAS  Google Scholar 

  75. Belinsky, S. A., Popp, J. A., Kauffman, F. C., and Thurman, R. G., 1984, Trypan blue uptake as a new method to study zonal hepatotoxicity in the perfused liver, J. Pharmacol. Exp. Ther. 230: 755–760.

    PubMed  CAS  Google Scholar 

  76. Israel, Y., Walfish, P. G., Orrego, H., Blake, J., and Kalant, H., 1979, Thyroid hormones in alcoholic liver disease, Gastroenterology 76: 116–122.

    PubMed  CAS  Google Scholar 

  77. Hallé, P., Paré, P., and Kapstein, E., 1982, Double-blind, controlled trial of propylthiouracil in patients with severe acute alcoholic hepatitis, Gastroenterology 82: 925–931.

    PubMed  Google Scholar 

  78. Szilagyi, A., Lerman, S., and Resnick, R. S., 1983, Ethanol, thyroid hormones and acute liver injury: Is there a relationship?, Hepatology 3: 593–600.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Plenum Press, New York

About this chapter

Cite this chapter

Thurman, R.G., Ji, S., Lemasters, J.J. (1986). Lobular Oxygen Gradients: Possible Role in Alcohol-Induced Hepatotoxicity. In: Thurman, R.G., Kauffman, F.C., Jungermann, K. (eds) Regulation of Hepatic Metabolism. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5041-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5041-5_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5043-9

  • Online ISBN: 978-1-4684-5041-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics