The Ngo-Lenhoff (Mbth-Dmab) Peroxidase Assay

  • William D. Geoghegan


The Ngo-Lenhoff peroxidase assay represents a new and sensitive procedure for the assay of horseradish peroxidase (HRP) and HRP-coupled reactions (Ngo and Lenhoff, 1980). The assay is sensitive enough to detect as little as 2–5 femtomoles of HRP per milliliter (Ngo and Lenhoff, 1980, Geoghegan et. al. 1983). Its sensitivity is based upon the oxidative coupling of 3-methyl-2-benzothi-azolinone hydrozone (MBTH) and 3-(dimethylamino)benzoic acid (DMAB) to form an indamine dye with a molar extinction coefficient of 47,600 (Ngo and Lenhoff, 1980).


Benzoic Acid Oxidative Coupling Aliphatic Aldehyde Oxalate Oxidase Circulate Immune Complex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ando, T., T. Muraoka and H. Okuda (1983). A sensitive spectrophotometry assay for guanase activity. Anal. Biochem. 130: 295–301.PubMedCrossRefGoogle Scholar
  2. Artiss, J.D., R.J. Thibert, J.M. Mcintosh, and B. Zak (1981). Study of various substrates for peroxidase-coupled oxidations. Microchem. J. 26:487–505.CrossRefGoogle Scholar
  3. Bovaird, J.H., T.T. Ngo and H.M. Lenhoff (1982). Optimizing the O-phenylenediamine assay for horseradish peroxidase: effects of phosphate and pH, substrate and enzyme concentrations and stopping reagents. Clin. Chem. 28:2423–2426.PubMedGoogle Scholar
  4. Capaldi, D.J., and K.E. Taylor (1983). A new peroxidase color reaction: oxidative coupling of 3-methyl-2-benzothiazolinone hydrazone (MBTH) with its formaldehyde azine. Application to glucose and choline oxidases. Anal. Biochem. 129:329–336.PubMedCrossRefGoogle Scholar
  5. Cary, R.N., D. Feldbruegge and J.O. Westgard (1974). Evaluation of the adaptation of the glucose oxidase/peroxidase-3-methyl-2-benzothiazolinone hydrazone-N,N-dimethylaniline procedure to the technicon “SMA 12/60” and comparison with other automated methods for glucose. Clin. Chem. 20:595–602.Google Scholar
  6. Deisseroth, A., and A.L. Dounce (1969). The purification and crystallization of beef erythrocyte catalase. Arch. Biochem. Biophys. 131:18–29.PubMedCrossRefGoogle Scholar
  7. Engvall, E. (1980). Enzyme immunoassay ELISA and EMIT. In Methods in Enzymology (Van Vunakis H. and Langone J.J., Eds.). Vol. 70, Academic Press, New York.Google Scholar
  8. Geoghegan, W.D., M.F. Struve, and R.E. Jordon (1982). Adaptation of the Ngo-Lenhoff peroxidase assay for ELISA. Fed. Proc. 41:792 (abstract).Google Scholar
  9. Geoghegan, W.D., M.F. Struve, and R.E. Jordon (1983). Adaptation of the Ngo-Lenhoff peroxidase assay for solid phase ELISA, J. Immunol. Methods 60:61–68.PubMedCrossRefGoogle Scholar
  10. Gochman, N., and J.M. Schmitz (1971). Automated determination of uric acid, with use of a uricase-peroxidase system. Clin. Chem. 17:1154–1159.PubMedGoogle Scholar
  11. Gochman, N., and J.M. Schmitz (1972). Application of a new peroxidase indicator reaction to the specific, automated determination of a glucose with glucose oxidase. Clin. Chem. 18:943–950.PubMedGoogle Scholar
  12. Hay, F.C., L.J. Nineham and I.M. Roitt (1976). Routine assay for the detection of immune complexes of known immunoglobulin class using solid phase Clq. Clin. Exp. Immunol. 24:396–400.PubMedGoogle Scholar
  13. Hay, F.C., L.J. Nineham, R. Perumal and I.M. Roitt (1979). Intraarticular and circulating immune complexes and antiglobulins (IgG and IgM) in rheumatoid arthritis: correlation with clinical features. Ann. Rheum. Pis. 38:1–7.CrossRefGoogle Scholar
  14. Honda, S., Y. Nishimura, H. Chiba, and K. Kakehi (1981). Determination of carbohydrates by condensation with 3-methyl-2-benzo-thiazolinone hydrazone. Anal. Chim. Acta 131:293–296.CrossRefGoogle Scholar
  15. Hunig, S., and K.H. Fritsch (1957). Azofarbstoffe durch oxydative kupplung I farbstoffe aus N-methyl-benzthiazolon-hydrazon Justus liebigs. Ann. Der. Chemie. 609:143–160.Google Scholar
  16. Hunig, S. (1962). Heterocyclic azo dyes by oxidative coupling. Angew. Chem. Internat. Edit. 1:640–646.CrossRefGoogle Scholar
  17. Killick, K. and L.W. Wang (1980). The localization of trehalase in Polyacrylamide gels with eugenol by a coupled enzyme assay. Anal. Biochem. 106:367–372.PubMedCrossRefGoogle Scholar
  18. Massamiri, Y., M. Beljean, G. Durand, J. Feger, M. Pays, and J. Agneray (1978). Colorimetric assay of sialic acid by a methyl-3-benzothiazolinone-2-hydrazone reactants. Anal. Biochem. 91:618–625.PubMedCrossRefGoogle Scholar
  19. Lenhoff, H.M., and N.O. Kaplan (1955). Cytochrome C and cytochrome C peroxidase from Pseudomonas fluorescens. In Methods in Enzymology, Volume 2, (Colowick, S. and N. Kaplan, Eds). Academic Press, New York, p. 758–764.CrossRefGoogle Scholar
  20. Mcllvaine, T.C. (1921). A buffer solution for colorimetric comparison. J. Biol. Chem. 49:183–186.Google Scholar
  21. Ngo, T.T. and H.M. Lenhoff (1980). A sensitive and versatile chromogenic assay for peroxidase and peroxidase-coupled reactions. Anal. Biochem. 105:389–397.PubMedCrossRefGoogle Scholar
  22. Obzansky, D.M. and K.E. Richardson (1983). Quantification of urinary oxalate with oxalate oxidase from beet stems. Clin. Chem. 29:1815–1819.PubMedGoogle Scholar
  23. Paz, M.A., O.O. Blumenfeld, M. Rojkind, E. Henson, C. Furfine, and P. M. Gallop (1965). Determination of carbonyl compounds with N-methyl benzothiazolone hydrazone. Arch. Biochem. Biophys. 109:548–559.PubMedCrossRefGoogle Scholar
  24. Perlstein, M.T., R.J. Thibert, and B. Zak (1977). Bilirubin and hemoglobin interferences in direct colorimetric cholesterol reactions using enzyme reagents. Microchem. J. 22:403–419.CrossRefGoogle Scholar
  25. Perlstein, M.T., R.J. Thibert, R. Watkins and B. Zak (1978). Spectrophotometric study of bilirubin and hemoglobin interactions in several hydrogen peroxide generating procedures. Microchem. J. 23:13–27.CrossRefGoogle Scholar
  26. Saravis, C.A. (1984). Improved blocking of nonspecific antibody binding sites on nitrocellulose membranes. Electrophoresis 5:54–55.CrossRefGoogle Scholar
  27. Sawicki, E., T.R. Hauser, T.W. Stanley and W. Elbert (1961). The 3-methyl-2-benzothiazolone hydrazone test. Anal. Chem. 33: 93–96.CrossRefGoogle Scholar
  28. Sawicki, E., R. Schumacher and C.R. Engel (1967). Comparison of MBTH and other methods -for the determination of sugars and other a-glycolic derivatives. Microchem. J. 12:377–395.CrossRefGoogle Scholar
  29. Smith, R.L. and E. Gilkerson (1979). Quantitation of glycosamino-glycan hexosamine using 3-methyl-2-benzothiazolone hydrozone hydrochloride. Anal. Biochem. 98:478–480.PubMedCrossRefGoogle Scholar
  30. Wampler, J.E., M.G. Mulkerrin and E.S. Rich (1979), Instrumentation and techniques for analysis of hydrogen peroxide and peroxide-producing reactions involving earthworm (diplocardia longa) bioluminescence. Clin. Chem. 25:1628–1634.PubMedGoogle Scholar
  31. White-Stevens, R.H. and L.R. Stover (1982). Interference by ascorbic acid in test systems involving peroxidase. II. Redox-coupled indicator systems. Clin. Chem. 28:589–595.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • William D. Geoghegan
    • 1
  1. 1.Department of DermatologyThe University of Texas Health Science Center-HoustonUSA

Personalised recommendations