Enzyme Immunoassay of Antibody

  • Seymour P. Halbert
  • Tsue-Ming Lin


The detection of specific antibodies in body fluids has proven to be of considerable value in diagnostic medicine for a wide variety of diseases, including those of infectious as well as of auto-immune origins. A number of divergent methods have been developed for these purposes, such as complement fixation, passive hemagglutination, viral hemagglutination inhibition, immunofluorescence and latex agglutination procedures. All of these require serial dilution titration for quantitation, which is tedious and reduces precision, and all suffer from the fact that the readings are largely subjective. Weak reactions are often very difficult to distinguish from negative ones. The development of enzyme immunoassays, particularly of the “sandwich” ELISA type (Engvall and Perlmann, 1972), permitted quantitative estimations to be made with a single dilution of serum or plasma over a wide range of values. They also easily permit antibody activity in the various immunoglobulin classes to be distinguished. The results are objectively read in a photometer, and the intensity of the reading is directly correlated with the antibody level. By use of the appropriate antigen in the solid phase and the correct type of enzyme-labeled anti-immunoglobulin conjugate, numerous antibody tests can be designed using the same format.


Systemic Lupus Erythematosus Infectious Mononucleosis Mixed Connective Tissue Disease Rubella Virus Immunoglobulin Class 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Chessum, B. S. and J. R. Denmark (1978). Inconstant ELISA. Lancet, Jan., 161.Google Scholar
  2. Engvall, E., and P. Perlmann (1972). Enzyme-linked immunosorbent assay, ELISA. III. Quantitation of specific antibodies by enzyme-linked anti-immunoglobulin in antigen-coated tubes. J. Immunol. 109: 129–135.PubMedGoogle Scholar
  3. Halbert, S. P., J. Karsh, and M. Anken (1980). A quantitative enzyme immunoassay for IgM rheumatoid factor using human immunoglobulin G as substrate. Am. J. Clin. Path. 74: 776–784.PubMedGoogle Scholar
  4. Halbert, S. P., J. Karsh, and M. Anken (1981). Studies on autoantibodies to deoxyribonucleic acid and deoxyribonucleoprotein with enzyme-immunoassay (ELISA). J. Lab. Clin. Med. 97: 97–111.PubMedGoogle Scholar
  5. Halbert, S. P., M. Anken, W. Henle, and R. Golubjatnikov (1982). Detection of infectious mononucleosis heterophil antibody by a rapid, standardized enzyme-linked immunosorbent assay procedure. J. Clin. Microbiol. 15: 610–616.PubMedGoogle Scholar
  6. Halbert, S. P., C. H. Bastomsky, and M. Anken (1983). A rapid standardized enzyme immunoassay for autoantibodies to thyroglobulin. Clin. Chim. Acta 127: 69–76.PubMedCrossRefGoogle Scholar
  7. Healy, G. R., and J. M. Walker (1982). Analysis of the sensitivity and specificity of the CORDIA A ELISA test for the diagnosis of amebiasis. 31st Annual Meeting of Am. Soc. Trop. Med. Hyg. Poster #86.Google Scholar
  8. Janeway, C. A., F. S. Rosen, E. Merler, and C. A. Alper (1967). The Gamma Globulins. Little, Brown and Company, Boston 148 pp.Google Scholar
  9. Karsh, J., S. P. Halbert, M. Anken, E. Klima and A. D. Steinberg (1982). Anti-DNA anti-deoxyribonucleoprotein and rheumatoid factor measured by ELISA in patients with systemic lupus erythematosus, Sjogren’s syndrome and rheumatoid arthritis. Int. Arch. Allergy Appl. Immun. 68: 60–69.CrossRefGoogle Scholar
  10. Kiefer, D. J., D. A. Phelps, and S. P. Halbert (1983). Normalized enzyme-linked immunosorbent assay for determining immunoglobulin G antibodies to cytomegalovirus. J. Clin. Microbiol. 18: 33–39.PubMedGoogle Scholar
  11. Kiefer, D. (1984). Personal communication.Google Scholar
  12. Kleeman, K. T., D. J. Kiefer, and S. P. Halbert (1983). Rubella antibodies detected by several commercial immunoassays in hemagglutination inhibition-negative sera. J. Clin. Microbiol. 18: 1131–1137.PubMedGoogle Scholar
  13. Lin, T. M., S. P. Halbert, and G. R. O’Connor (1980). Standardized quantitative enzyme-linked immunoassay for antibodies to Toxoplasma gondii. J. Clin. Microbiol. 11: 675–681.PubMedGoogle Scholar
  14. Lin, T. M., S. P. Halbert, C. T. Chiu, and R. Zarco (1981). Simple standardized enzyme-linked immunosorbent assay for human antibodies to Entamoeba histolytica. J. Clin. Microbiol. 13: 646–651.PubMedGoogle Scholar
  15. Lin, T. M., S. P. Halbert, R. Cort, and M. J. Blaschke (1983). An enzyme-linked immunoassay for circulating immune complexes using solid-phased goat Clq. J. Immuno1. Methods 63: 187–205.CrossRefGoogle Scholar
  16. Lin, T. M., M. W. Chin-See, and S. P. Halbert (1984). To be published.Google Scholar
  17. Morgan-Capner, P., R. S. Tedder, and J. E. Mace (1983). Rubella-specific IgM reactivity in sera from cases of infectious mononucleosis. J. Hyg. Camb. 90: 407–413.PubMedCrossRefGoogle Scholar
  18. Serdula, M. K., S. B. Halstead, N. H. Wiebenga, and K. L. Herrmann (1984). Serological response to rubella vaccination. J. Am. Med. Assoc. 251: 1974–1977.CrossRefGoogle Scholar
  19. Torrigiani, G., I. M. Roitt, and D. Doniach (1961). Quantitative distribution of thyroglobulin autoantibodies in different immunoglobulin classes. Clin. Exp. Immunol. 3: 621–630.Google Scholar
  20. Weisburger, E. K., A. B. Russfield, F. Homburger, J. H. Weisburger, E. Boger, C. G. van Dongen, and K. C. Chu (1978). Testing of twenty-one environmental aromatic amines or derivatives for long-term toxicity or carcinogenicity. J. Environmental Path. Toxicol. 2: 325–356.Google Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • Seymour P. Halbert
    • 1
  • Tsue-Ming Lin
    • 1
  1. 1.Cordis LaboratoriesMiamiUSA

Personalised recommendations