Skip to main content

The Pattern and Place of Nociceptive Modulation in the Dorsal Horn

A Discussion of the Anatomically Characterized Neural Circuitry of Enkephalin, Serotonin, and Substance P

  • Chapter
Spinal Afferent Processing

Abstract

Recent technical innovations have advanced the study of the mechanisms of pain and analgesia. These advances have resulted in an increased understanding of the anatomical organization of the dorsal horn at the medullary and spinal levels. Studies employing immunocytochemical labeling of neurotransmitters, retrograde transport of HRP, and intracellular HRP techniques have been at the forefront. The greatest strides, however, have been made when two of these approaches were combined in a single experiment to identify relationships between two labeled elements simultaneously. Many of the multiple-label experiments that were first accomplished in the dorsal horn are applicable throughout the nervous system. The observations are useful from the perspective of basic concepts of neural circuitry as well as a characterization of the pathways involved in pain and analgesia. Study of the spinal cord dorsal horn offers a unique advantage in that it contains many of the identified substances in the nervous system that act as neurotransmitters or neuromodulators (Table I). These neurochemicals include both classical neurotransmitters such as the monoamines and amino acids as well as recently discovered families of neuropeptides. This chapter seeks to address some of the fundamental observations on the anatomical and neurochemical organization of the dorsal horn and to apply the findings to basic issues of integration in the nervous system as well as to the study of pain and analgesia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aronin, N., DiFiglia, M., Liotta, A. S., and Martin, J. B. Ultrastructural localization and biochemical features of immunoreactive leu-enkephalin in monkey dorsal horn. J. Neurosci. 1:561–577, 1981.

    PubMed  CAS  Google Scholar 

  • Barber, R. P., Vaughn, J. E., Sherman, J. R., Salvaterra, P. M., Roberts, E., and Leeman, S. E. The origin, distribution and synaptic relationships of substance P axons in rat spinal cord. J. Comp. Neurol. 184:331–352, 1979.

    Article  PubMed  CAS  Google Scholar 

  • Basbaum, A. I. Anatomical substrates for the descending control of nociception, in: Brain Stem Control of Spinal Mechanisms (B. Sjöland and A. Björklund, eds.), Elsevier, Amsterdam, 1982, pp. 119–133.

    Google Scholar 

  • Basbaum, A. I., Clanton, C. H., and Fields, H. L. Three bulbospinal pathways from the rostral medulla of the cat: An autoradiographic study of pain modulating systems. J. Comp. Neurol. 1:209–224, 1978.

    Article  Google Scholar 

  • Bennett, G. J., Abdelmoumene, M., Hayashi, H., and Dubner, R. Physiology and morphology of substantia gelatinosa neurons intracellularly stained with horseradish peroxidase. J. Comp. Neurol. 194:809–827, 1980.

    Article  PubMed  CAS  Google Scholar 

  • Bennett, G. J., Abdelmoumene, M., Hayashi, H., Hoffert, M. J., and Dubner, R. Spinal cord layer I neurons with axon collaterals that generate local arbors. Brain Res. 209:421–426, 1981a.

    Article  PubMed  CAS  Google Scholar 

  • Bennett, G. J., Abdelmoumene, M., Hayashi, H., Hoffert, M. J., Ruda, M. A., and Dubner, R. Physiology, morphology and immunocytology of dorsal horn layer III neurons. Pain [Suppl.] 1:S240, 1981b.

    Article  Google Scholar 

  • Bennett, G. J., Ruda, M. A., Gobel, S., and Dubner, R. Enkephalin immunoreactive stalked cells and lamina IIb islet cells in cat substantia gelatinosa. Brain Res. 240:162–166, 1982.

    Article  PubMed  CAS  Google Scholar 

  • Bowker, R. M., Steinbusch, H. W. M., and Coulter, J. D. Serotonergic and peptidergic projections to the spinal cord demonstrated by a combined retrograde HRP histochemical and immunocytochemical staining method. Brain Res. 211:412–417, 1981a.

    Article  PubMed  CAS  Google Scholar 

  • Bowker, R. M., Westlund, K. N., and Coulter, J. D. Origins of serotonergic projections to the spinal cord in rat: An immunocytochemical-retrograde transport study. Brain Res. 226:187–199, 1981b.

    Article  PubMed  CAS  Google Scholar 

  • Burton, H., and Craig, A. D., Jr. Distribution of trigeminothalamic projection cells in cat and monkey. Brain Res. 161:515–521, 1979.

    Article  PubMed  CAS  Google Scholar 

  • Carstens, F., and Trevino, D. L. Laminar origins of spinothalamic projections in the cat as determined by the retrograde transport of horseradish peroxidase. J. Comp. Neurol. 182:151–166, 1978.

    Article  Google Scholar 

  • Cuello, A. C., de LFiacco, M., and Paxinos, G. The central and peripheral ends of the substance P-containing sensory neurones in the rat trigeminal system. Brain Res. 152:499–509, 1978.

    Article  PubMed  CAS  Google Scholar 

  • Dahlström, A., and Fuxe, K. Evidence for the existence of monoamine-containing neurons in the central nervous system. I. Demonstration of monoamines in the cell bodies of brain stem neurons. Acta Physiol. Scand. [Suppl.] 232:1–55, 1964.

    Google Scholar 

  • Dahlström, A., and Fuxe, K. Evidence for the existence of monoamine-containing neurons in the central nervous sytem. II. Experimentally induced changes in the intraneuronal amine levels of bulbospinal neuron systems. Acta Physiol. Scand. [Suppl] 247:7–36, 1965.

    Google Scholar 

  • Delanerolle, N. C., and LaMotte, C. C. Ultrastructure of chemically denned neuron systems in the dorsal horn of the monkey. I. Substance P immunoreactivity. Brain Res. 274:31–49, 1983.

    Article  CAS  Google Scholar 

  • DiFiglia, M., Aronin, N., and Leeman, S. E. Light microscopic and ultrastructural localization of immunoreactive substance P in the dorsal horn of monkey spinal cord. Neuroscience 7:1127–1139, 1982.

    Article  PubMed  CAS  Google Scholar 

  • Dubner, R., and Bennett, G. J. Spinal and trigeminal mechanisms of nociception. Annu. Rev. Neurosci. 6:381–418, 1983.

    Article  PubMed  CAS  Google Scholar 

  • Dubner, R., Ruda, M. A., Miletic, V., Hoffert, M. J., Bennett, G. J., Nishikawa, N., and Coffield, J. Neural circuitry mediating nociception in the medullary and spinal dorsal horns, in: Advances in Pain Research and Therapy, Vol. 6 (L. Kruger and J. C. Liebeskind, eds.), Raven Press, New York, 1984, pp. 151–166.

    Google Scholar 

  • Gibson, S. J., Polak, J. M., Bloom, S. R., and Wall, P. D. The distribution of nine peptides in rat spinal cord with special emphasis on the substantia gelatinosa and on the area around the central canal (lamina X). J. Comp. Neurol. 201:65–79, 1981.

    Article  PubMed  CAS  Google Scholar 

  • Giesler, G. J., Jr., Menetrey, D., and Basbaum, A. I. Differential origins of spinothalamic tract projections to medial and lateral thalamus in the rat. J. Comp. Neurol. 184:107–126, 1979.

    Article  PubMed  Google Scholar 

  • Giesler, G. J., Jr., Yezierski, R. P., Gerhart, K. D., and Willis, W. D. Spinothalamic tract neurons that project to medial and/or lateral thalamic nuclei: Evidence for a physiologically novel population of spinal cord neurons. J. Neurophysiol. 46:1285–1308, 1981.

    PubMed  Google Scholar 

  • Gilbert, R. F. T., Emson, P. C., Hunt, S. P., Bennett, G. W., Marsden, C. A., Sandberg, B. E. B., Steinbusch, H. W. M., and Verhofstad, A. A.J. Effects of monoamine neurotoxins on peptides in the rat spinal cord. Neuroscience 7:69–87, 1982.

    Article  PubMed  CAS  Google Scholar 

  • Glazer, E. J., and Basbaum, A. I. Immunohistochemical localization of leucine-enkephalin in the spinal cord of the cat. Enkephalin-containing marginal neurons and pain modulation. J. Comp. Neurol. 196:377–389, 1981.

    Article  PubMed  CAS  Google Scholar 

  • Glazer, E. J., and Basbaum, A. I. Opiate neurons and pain modulation: An ultrastructural analysis of enkephalin in cat superficial dorsal horn. Neuroscience 10:357–376, 1982.

    Article  Google Scholar 

  • Glazer, E. J., and Basbaum, A. I. Axons which take up [3H]serotonin are presynaptic to enkephalin immunoreactive neuron in cat dorsal horn. Brain Res. 298:386–391, 1984.

    Article  PubMed  CAS  Google Scholar 

  • Hockfield, S., and Gobel, S. Neurons in and near nucleus caudalis with long ascending projection axons demonstrated by retrograde labeling with horseradish peroxidase. Brain Res. 139:333–339, 1978.

    Article  PubMed  CAS  Google Scholar 

  • Hoffert, M. J., Miletic, V., Ruda, M. A., and Dubner, R. A comparison of substance P and serotonin axonal contacts on identified neurons in cat spinal dorsal horn. Soc. Neurosci. Abstr. 8:805, 1982.

    Google Scholar 

  • Hoffert, M. J., Miletic, V., Ruda, M. A., and Dubner, R. Immunocytochemical identification of serotonin axonal contacts on characterized neurons in laminae I and II of the cat dorsal horn. Brain Res. 267:361–364, 1983.

    Article  PubMed  CAS  Google Scholar 

  • Hökfelt, T., Kellerth, J. O., Nilsson, G., and Pernow, B. Substance P localization in the central nervous system and in some primary sensory neurons. Science 190:889–890, 1975a.

    Article  PubMed  Google Scholar 

  • Hökfelt, T., Kellerth, J. O., Nilsson, G., and Pernow, B. Experimental immunohistochemical studies on the localization and distribution of substance P in the cat primary sensory neurons. Brain Res. 100:235–252, 1975b.

    Article  PubMed  Google Scholar 

  • Hökfelt, T., Ljungdahl, A., Terenius, L., Elde, R., and Nilsson, G., Immunohistochemical analysis of peptide pathways possibly related to pain and analgesia: Enkephalin and substance P. Proc. Natl. Acad. Sci. U.S.A. 74:3081–3085, 1977.

    Article  PubMed  Google Scholar 

  • Hökfelt, T., Terenius, L., Kuypers, H. G. J. M., and Dann, O. Evidence for enkephalin immunoreactive neurons in the medulla oblongata projecting to the spinal cord. Neurosci. Lett. 14:55–60, 1979.

    Article  PubMed  Google Scholar 

  • Hunt, S. P., Kelly, J. S., and Emson, P. C. The electron microscopic localization of methionine-enkephalin within the superficial layers (I and II) of the spinal cord. Neuroscience 5:1871–1890, 1980.

    Article  PubMed  CAS  Google Scholar 

  • Hunt, S. P., Kelly, J. S., Emson, P. C., Kimmel, J. R., Miller, R. J., and Wu, J. Y. An immunohistochemical study of neuronal populations containing neuropeptides or gamma-ami-nobutyrate within the superficial layers of the rat dorsal horn. Neuroscience 6:1883–1898, 1981.

    Article  PubMed  CAS  Google Scholar 

  • Jessell, T., Tsunoo, A., Kanazawa, I., and Otsuka, M. Substance P: Depletion in the dorsal horn of rat spinal cord after section of the peripheral processes of primary sensory neurons. Brain Res. 168:247–259, 1979.

    Article  PubMed  CAS  Google Scholar 

  • Kenshalo, D. R., Jr., Leonard, R. B., Chung, J. M., and Willis, W. D. Responses of primate spinothalamic neurons to graded and to repeated noxious heat stimuli J. Neurophysiol. 42:1370–1389, 1979.

    PubMed  Google Scholar 

  • LaMotte, C. C., and Delanerolle, N. C. Ultrastructure of chemically defined neuron systems in the dorsal horn of the monkey. II. Methionine-enkephalin immunoreactivity. Brain Res. 274:51–63, 1983a.

    Article  PubMed  CAS  Google Scholar 

  • LaMotte, C. C., and Delanerolle, N. C. Ultrastructure of chemically defined neuron systems in the dorsal horn of the monkey. III. Serotonin immunoreactivity. Brain Res. 274:65–77, 1983b.

    Article  PubMed  CAS  Google Scholar 

  • Light, A. R., Trevino, D. L., and Perl, E. R. Morphological features of functionally defined neurons in the marginal zone and substantia gelatinosa of the spinal dorsal horn. J. Comp. Neurol. 186:151–171, 1979.

    Article  PubMed  CAS  Google Scholar 

  • Light, A. R., Kavookjian, A. M., and Petrusz, P. The ultrastructure and synaptic connections of serotonin-immunoreactive terminals in spinal laminae I and II. Somatosens. Res. 1:33–50, 1983.

    Article  PubMed  CAS  Google Scholar 

  • Ljungdahl, A., Hökfelt, T., and Nilsson, G. Distribution of substance P-immunoreactivity in the central nervous system of the rat. I. Cell bodies and nerve terminals. Neuroscience 3:861–943, 1978.

    Article  PubMed  CAS  Google Scholar 

  • Massari, V. J., Tizabi, Y., Park, C. H., Moody, T. W., Helke, C. J., and O’donohue, T. L. Distribution and origin of bombesin, substance P and somatostatin in cat spinal cord. Peptides 4:673–681, 1983.

    Article  PubMed  CAS  Google Scholar 

  • Miletic, V., Hoffert, M. J., Ruda, M. A., Dubner, R., and Shigenaga, Y. Serotonergic axonal contacts on identified cat spinal dorsal horn neurons and their correlation with nucleus raphe magnus stimulation. J. Comp. Neurol. 228:129–141, 1984.

    Article  PubMed  CAS  Google Scholar 

  • Narotsky, R. A., and Kerr, F. W. L. Marginal neurons of the spinal cord: Types, afferent synaptology and functional considerations. Brain Res. 139:1–20, 1978.

    Article  Google Scholar 

  • Nishikawa, N., Bennett, G. J., Ruda, M. A., Lu, G.-W., and Dubner, R. Immunocytochemical evidence for a serotonergic innervation of dorsal column postsynaptic neurons in cat and monkey. Neuroscience 10:1333–1340, 1983.

    Article  PubMed  CAS  Google Scholar 

  • Pickel, V. M., Reis, D. J., and Leeman, S. E. Ultrastructure of substance P in neurons of rat spinal cord. Brain Res. 122:534–540, 1977.

    Article  PubMed  CAS  Google Scholar 

  • Price, D. D., Dubner, R., and Hu, J. W. Trigeminothalamic neurons in nucleus caudalis responsive to tactile, thermal, and nociceptive stimulation of monkey’s face. J. Neurophysiol. 39:936–953, 1976.

    PubMed  CAS  Google Scholar 

  • Price, D. D., Hayashi, H., Dubner, R., and Ruda, M. A. Functional relationships between neurons of marginal and substantia gelatinosa layers of primate dorsal horn. J. Neurophysiol. 42:1590–1608, 1979.

    PubMed  CAS  Google Scholar 

  • Priestley, J. V., Somogyi, P., and Cuello, A. C. Immunocytochemical localization of substance P in the trigeminal nucleus of the rat: A light and electron microscopic study. J. Comp. Neurol. 211:31–49, 1982.

    Article  PubMed  CAS  Google Scholar 

  • Priestley, J. V., and Cuello, A. C. Substance P immunoreactive terminals in the spinal trigeminal nucleus synapse with lamina I neurons projecting to the thalamus, in: Substance P (P. Skraborek and D. Powell, eds.), Book Press, Dublin, 1983, pp. 251–252.

    Google Scholar 

  • Ralston, H. J. III, and Ralston, D. D. The distribution of dorsal root axons in laminae I, II and III of the macaque spinal cord: A quantitative electron microscope study. J. Comp. Neurol 184:643–684, 1979.

    Article  PubMed  Google Scholar 

  • Ruda, M. A. Opiates and pain pathways: Demonstration of enkephalin synapses on dorsal horn projection neurons. Science 215:1523–1525, 1982.

    Article  PubMed  CAS  Google Scholar 

  • Ruda, M. A., Coffield, J., and Steinbusch, H. W. M. Immunocytochemical analysis of serotonergic axons in laminae I and II of the lumbar spinal cord of the cat. J. Neurosci. 2:1660–1671, 1982.

    PubMed  CAS  Google Scholar 

  • Ruda, M. A., Coffield, J., Bennett, G. J., and Dubner, R. Role of serotonin (5-HT) and enkephalin (ENK) in trigeminal and spinal pain pathways. J. Dent. Res. 62:691, 1983.

    Google Scholar 

  • Ruda, M. A., and Coffield, J., Light and ultrastructural immunocytochemical localization of serotonin synapses on primate spinothalamic tract neurons. Soc. Neurosci. Abstr. 9:1, 1983.

    Google Scholar 

  • Ruda, M. A., Coffield, J., and Dubner, R. Demonstration of postsynaptic opioid modulation of thalamic projection neurons by the combined techniques of retrograde horseradish peroxidase and enkephalin immunocytochemistry. J. Neurosci. 4:2117–2132, 1984.

    PubMed  CAS  Google Scholar 

  • Sar, M., Stumpf, W. E., Miller, R. J., Chang, K.J., and Cuatrecasas, P. Immunohistochemical localization of enkephalin in rat brain and spinal cord. J. Comp. Neurol. 182:17–38, 1978.

    Article  PubMed  CAS  Google Scholar 

  • Seybold, V., and Elde, R. Immunohistochemical studies of peptidergic neurons in the dorsal horn of the spinal cord. J. Histochem. Cytochem. 28:367–370, 1980.

    Article  PubMed  CAS  Google Scholar 

  • Steinbusch, H. W. M. Distribution of serotonin-immunoreactivity in the central nervous system of the rat—cell bodies and terminals. Neuroscience 6:557–618, 1981.

    Article  PubMed  CAS  Google Scholar 

  • Sumal, K., K., Pickel, V. M., Miller, R. J., and Reis, D. J. Enkephalin-containing neurons in substantia gelatinosa of spinal trigeminal complex: Ultrastructure and synaptic interaction with primary sensory Afferents. Brain Res. 248:223–236, 1982.

    Article  PubMed  CAS  Google Scholar 

  • Takahashi, T., and Otsuka, M. Regional distribution of substance P in the spinal cord and nerve roots of the cat and the effect of dorsal root section. Brain Res. 87:1–11, 1975.

    Article  PubMed  CAS  Google Scholar 

  • Tessler, A., Himes, B. T., Artmyshyn, R., Murray, M., and Goldberger, M. E. Spinal neurons mediate return of substance P following deafferentation of cat spinal cord. Brain Res. 230:263–281, 1981.

    Article  PubMed  CAS  Google Scholar 

  • Trevino, D. L., Maunz, R. A., Bryan, R. N., and Willis, W. D. Location of cells of origin of the spinothalamic tract in the lumbar enlargement of cat. Exp. Neurol. 34:64–77, 1972.

    Article  PubMed  CAS  Google Scholar 

  • Uhl, G. R., Goodman, R. R., Kuhar, M. J., Children, S. R., and Snyder, S. H. Immunohistochemical mapping of enkephalin containing cell bodies, fibers and nerve terminals in the brain stem of the rat. Brain Res. 166:75–94, 1979.

    Article  PubMed  CAS  Google Scholar 

  • Willcockson, W. S., Chung, J. M., Hori, Y., Lee, K. H., and Willis, W. D. Effects of ionto-phoretically released amino acids and amines on primate spinothalamic tract cells. J. Neurosci. 4:732–740, 1984a.

    PubMed  CAS  Google Scholar 

  • Willcockson, W. S., Chung, J. M., Hori, Y., Lee, K. H., and Willis, W. D. Effects of ionto-phoretically released peptides on primate spinothalamic tract cells. J. Neurosci. 4:741–750, 1984b.

    PubMed  CAS  Google Scholar 

  • Willis, W. D., Kenshalo, D. R., Jr, and Leonard, R. B. The cells of origin of the primate spinothalamic tract. J. Comp. Neurol. 188:543–574, 1979.

    Article  PubMed  CAS  Google Scholar 

  • Willis, W. D., Trevino, D. L., Coulter, J. D., and Maunz, R. A. Responses to primate spinothalamic tract neurons to natural stimulation of hindlimb. J. Neurophysiol. 37:358–372, 1974.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ruda, M.A. (1986). The Pattern and Place of Nociceptive Modulation in the Dorsal Horn. In: Yaksh, T.L. (eds) Spinal Afferent Processing. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-4994-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-4994-5_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-4996-9

  • Online ISBN: 978-1-4684-4994-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics