Skip to main content

Neurotransmitter Receptor Sites in the Spinal Cord

  • Chapter
Spinal Afferent Processing

Abstract

Since the studies discussed in this chapter concern the distribution of receptors for neurotransmitters, it is important to specify that the term “receptor” implies a physiologically functional unit. Binding of a transmitter molecule to its binding site on the neuronal membrane surface initiates a physical change in the receptor unit that results in a physiological change, i.e., a change in membrane ion permeability (nicotinic cholinergic receptor) or activation of an enzyme resulting in a change in the level of a biochemical intermediate within the cell (β-adrenergic receptors and many peptide hormone receptors). Binding studies and autoradiograms, however, reflect just the binding site portion of the receptor unit, and such data must be described in terms of binding sites. However, the radiolabeled ligands used to prepare the autoradiograms are pharmacologically active compounds whose physiological effects on the system may be well characterized. Therefore, in this discussion of the biological significance of binding sites, I refer to them as receptors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alexander, G. M., Schwartzman, R. J., Bell, R. D., Yu, J., and Renthal, A. Quantitative measurement of local cerebral metabolic rate for glucose utilizing tritiated 2-deoxyglucose. Brain Res. 223:59–67, 1981.

    Article  PubMed  CAS  Google Scholar 

  • Aronin, N., DiFiglia, M., Liotta, A. S., and Martin, J. S. Ultrastructural localization and biochemical features of immunoreactive leu-enkephalin in monkey dorsal horn. J. Neurosci. 1:561–577, 1981.

    PubMed  CAS  Google Scholar 

  • Astrachan, D. I., Davis, M., and Gallager, D. W. Behaviour and binding: Correlations between alpha-1 adrenergic stimulation of acoustic startle and alpha-1 adrenoceptor occupancy and number in rat lumbar spinal cord. Brain Res. 260:81–90, 1983.

    Article  PubMed  CAS  Google Scholar 

  • Atvveh, S. F., and Klhar, M. J., Autoradiographic localization of opiate receptors in rat brain. I. Spinal cord and lower medulla. Brain Res. 124:53–67, 1977.

    Article  Google Scholar 

  • Barber, R. P., Vaughn, J. E., Saito, K., Mc Laughlin, S. J., and Roberts, E. Gabaergic terminals are presynaptic to primary afferent terminals in the substantia gelatinosa of the rat spinal cord. Brain Res. 141:35–55, 1978.

    Article  PubMed  CAS  Google Scholar 

  • Barber, R. P., Vaughn, J. E., Slemmon, J. R., Salvaterra, P. M., Roberts, E., and Leeman, S. E. The origin, distribution and synaptic relationships of substance P axons in rat spinal cord. J. Comp. Neurol, 184:331–352, 1979.

    Article  PubMed  CAS  Google Scholar 

  • Basbaum, A. I., and Glazer, E. J. Immunoreactive vasoactive intestinal polypeptide is concentrated in the sacral spinal cord: A possible marker for pelvic visceral afferent fibers. Sornatosens. Res. 1:69–82, 1983.

    Article  CAS  Google Scholar 

  • Blackshear, M. A., Steranka, L. R., and Sanders-Bush, E. Multiple serotonin receptors: Regional distribution and effect of raphe lesions. Eur. J. Pharmacol. 76:325–334, 1981.

    Article  PubMed  CAS  Google Scholar 

  • Carlsson, J., Falk, B., Fuxe, K., and Hillary, N.J., Cellular localization of monoamines in the spinal cord. Acta. Physiol. Scand, 60:112–119, 1964.

    Article  PubMed  CAS  Google Scholar 

  • Dahlstrom, A., and Fuxe, K. Evidence for the existence of monoamine containing neurons in the central nervous system. II. Experimentally induced changes in the intraneuronal amine levels of bulbospinal neuron systems. Acta Physiol. Scand. [Suppl.] 247:1–36, 1965.

    Google Scholar 

  • Dalsgaard, C.-J., Vincent, S. R., Hökfelt, T., Lundberg, J. M., Dahlstrom, A., Schultzberg, M., Dockray, G. J., and Cuello, A. C. Coexistence of cholecystokinin-and substance P-like peptides in neurons of the dorsal root ganglia of the rat. Neurosci. Lett. 33:159–163, 1982.

    Article  PubMed  CAS  Google Scholar 

  • Demenge, P., Feuerstein, C., Mouchet, P., and Guerin, B. Stereospecific binding of [3H]-haloperidol in rat dorsal spinal cord. Eur. J. Pharmacol. 66:117–120, 1980.

    Article  PubMed  CAS  Google Scholar 

  • Demenge, P., Mouchet, P., Guerin, B., and Feuerstein, C. Identification and distribution of neuroleptic binding sites in the rat spinal cord. J. Neurochem. 37:53–59, 1981.

    Article  PubMed  CAS  Google Scholar 

  • Descarries, L., and Lapierre, Y. Noradrenergic axon terminals in the cerebral cortex of the rat. I. Radioautographic visualization after topical application of dl-[3H]-norepinephrine. Brain Res. 51:141–160, 1973.

    Article  PubMed  CAS  Google Scholar 

  • Descarries, L., Beaudet, A., and Watkin, K. C. Serotonin nerve terminals in adult rat neocortex. Brain Res. 100:563–588, 1975.

    Article  PubMed  CAS  Google Scholar 

  • Deschodt-Lanckman, M., Bui, N.D., and Christophe, J. Cholecystokinin octa-and tetrapeptide degradation by synaptic membranes. Evidence for competition with enkephalins for common degradation pathways. Neurosci. Lett. [SuppL] 7:S321, 1981.

    Google Scholar 

  • DiFiglia, M., Aronin, N., and Leeman, S. E. Ultrastructural localization of immunoreactive neurotensin in monkey superficial dorsal horn. J. Comp. Neurol. 225:1–12, 1984.

    Article  PubMed  CAS  Google Scholar 

  • Fielding, S., Wilbur, J., Hyner, M., Szewczak, M., Novick, W. J., Jr. and Harbans, L. A comparison of clonidine with morphine for antinociceptive and withdrawal actions. J. Pharmacol Exp. Ther. 207:899–905, 1978.

    PubMed  CAS  Google Scholar 

  • Fields, H. L., Wagner, G. M., and Anderson, S. D. Some properties of spinal neurons projecting to the medial brain-stem reticular formation. Exp. Neurol. 47:118–134, 1975.

    Article  PubMed  CAS  Google Scholar 

  • Fields, H. L., Emson, P. C., Leigh, B. K., Gilbert, R. F. T., and Iversen, L. L. Multiple opiate receptor sites on primary afferent fibres. Nature 284:351–353, 1980.

    Article  PubMed  CAS  Google Scholar 

  • Frere, R. C., Mac Donald, R. L., and Young, A. B. Gaba binding and bicuculline in spinal cord and cortical membranes from adult rat and from mouse neurons in cell culture. Brain Res. 244:145–153, 1982.

    Article  PubMed  CAS  Google Scholar 

  • Gamse, R., Hölzer, P., and Lembeck, F. Indirect evidence for presynaptic location of opiate receptors on chemosensitive primary sensory neurones. Naunyn Schmiedebergs Arch. Pharmacol. 308:281–285, 1979.

    Article  PubMed  CAS  Google Scholar 

  • Gibson, S. J., Polak, J. M., Bloom, S. R., and Wall, P. D. The distribution of nine peptides in rat spinal cord with special emphasis on the area around the central canal (lamina X). J. Comp. Neurol. 201:65–79, 1981.

    Article  PubMed  CAS  Google Scholar 

  • Glazer, E. J., and Basbaum, A. I. Opioid neurons and pain modulation: An ultrastructural analysis of enkephalin in cat superficial dorsal horn. Neurosci. 10:357–376, 1983.

    Article  CAS  Google Scholar 

  • Goodman, R. R., and Snyder, S. H. Autoradiographic localization of adenosine receptors in rat brain using [3H]cyclohexyladenosine. J. Neurosci. 2:1230-1241.

    Google Scholar 

  • Goodman, R. R., Synder, S. H., Kuhar, M. J., and Young, W. S. III. Differentiation of delta and mu opiate receptor localizations by light microscopic autoradiography. Proc. Natl. Acad. Sci. U.S.A. 77:6239–6243, 1980.

    Article  PubMed  CAS  Google Scholar 

  • Gouarderes, C., Audigier, Y., and Cros, J. Benzomorphan binding sites in rat lumbo-sacral spinal cord. Eur. J. Pharmacol. 78:483–486, 1982.

    Article  PubMed  CAS  Google Scholar 

  • Harris, D. W., and Sethy, V. H. High affinity binding of [3H]ethylketocyclazocine to rat brain homogenate. Eur. J. Pharmacol. 66:121–123, 1980.

    Article  PubMed  CAS  Google Scholar 

  • Herkenham, M., and Sokoloff, L. Quantification of receptor densities by autoradiography: Tissue defatting minimizes differential absorbance of tritium by gray and white matter. Soc. Neurosci. Abstr. 9:329, 1983.

    Google Scholar 

  • Hiller, J. M., Simon, E. J., Crain, S. M., and Petersen, E. R. Opiate receptors in cultures of fetal mouse dorsal root ganglia (DRG) and spinal cord: Predominance in DRG neurites. Brain Res. 145:396–400, 1978.

    Article  PubMed  CAS  Google Scholar 

  • Hökfelt, T., Elde, R., Johansson, O., Terenius, L., and Stein, L. The distribution of enkephalin-immunoractive cell bodies in the rat central nervous system. Neurosci Lett. 5:25–31, 1977.

    Article  PubMed  Google Scholar 

  • Honda, C. N., and Perl, E. R. Properties of neurons in lamina X and the midline dorsal horn of the sacrococcygeal spinal cord of the cat. Soc. Neurosci. Abstr. 7:610, 1981.

    Google Scholar 

  • Hosli, E., and Hosli, L. Evidence for the existence of alpha-and beta-adrenoceptors on neurones and glial cells of cultured rat central nervous system—an autoradiographic study. Neuroscience 7:2873–2881, 1982.

    Article  PubMed  CAS  Google Scholar 

  • Howe, J., and Yaksh, T. Changes in sensitivity to intrathecal norepinephrine and serotonin after 6-hydroxydopamine (6-Ohda), 5,6-dihyroxytryptamine (5,6-DHT) or repeated monoamine administration. J. Pharmacol. Exp. Ther. 220:311–321, 1982.

    PubMed  CAS  Google Scholar 

  • Howe, J., and Yaksh, T. Alpha2-adrenoceptor binding and monoamine content in the cat lumbar spinal cord after intrathecal 6-hydroxydopamine on cervical hemisection. Soc. Neurosci. Abstr. 10:489, 1984.

    Google Scholar 

  • Howe, J. R., Wang J.-Y., and Yaksh, T. L. Selective antagonism of the antinociceptive effect of intrathecally applied α-adrenergic agonists by intrathecal prazosin and intrathecal yohimbine. J. Pharmacol. Exp. Ther. 224:552–558, 1983.

    PubMed  CAS  Google Scholar 

  • Hunt, S. P., Kelly, J. S., and Emson, P. C. The electron microscopic localization of methionine enkephalin within the superficial layers (I and II) of the spinal cord. Neuroscience 5:1871–1890, 1980.

    Article  PubMed  CAS  Google Scholar 

  • Hylden J. L. K., and Wilcox G. L. Antinociceptive action of intrathecal neurotensin in mice. Peptides 4:517–520, 1983a.

    Article  PubMed  CAS  Google Scholar 

  • Hylden, J. L. K., Wilcox, G. L. Intrathecal serotonin in mice: Analgesia and inhibition of a spinal action of substance P. Life S?. 33:789–795, 1983b.

    Article  CAS  Google Scholar 

  • Hylden, J. L. K., and Wilcox, G. L. Pharmacological characterization of substance P-induced nociception in mice: Modulation by opioid and noradrenergic agonists at the spinal level. J. Pharmacol. Exp. Ther. 226:398–404, 1983c.

    PubMed  CAS  Google Scholar 

  • Jan, L. Y., Jan, Y. N., and Brownfield, M. S. Peptidergic transmitters in synaptic boutons of sympathetic ganglia. Nature 288:380–382, 1980.

    Article  PubMed  CAS  Google Scholar 

  • Jessell, T. M., and Iversen, L. L. Opiate analgesics inhibit substance P release from rat trigeminal nucleus. Nature 268:549–551, 1977.

    Article  PubMed  CAS  Google Scholar 

  • Jessell, T. M., Iversen, L. L., and Cuello, A. C. Capsaicin-induced depletion of substance P from primary sensory neurones. Brain Res. 152:183–188, 1978.

    Article  PubMed  CAS  Google Scholar 

  • Jessell, T., Tsunoo, A., Kanazawa, I., and Otsuka, M. Substance P: Depletion in the dorsal horn of rat spinal cord after section of the peripheral processes of primary sensory neurons. Brain Res. 168:247–259, 1979.

    Article  PubMed  CAS  Google Scholar 

  • Jones, D. J., Kendall, D. E., and Enna, S. J. Adrenergic receptors in rat spinal cord. Neuropharmacology 21:191–195, 1982.

    Article  PubMed  Google Scholar 

  • Jurna, I. and Zetler, G. Antinociceptive effect of centrally administered caerulein and chole-cystokinin octapeptide (CCK-8). Eur. J. Pharmacol. 73:321, 1981.

    Article  Google Scholar 

  • Kayaalp, S. O., and Neff, N. H. Regional distribution of cholinergic muscarinic receptors in spinal cord. Brain Res. 196:429–436, 1980.

    Article  PubMed  CAS  Google Scholar 

  • Kimura, H., McGeer, P. L., Peng, J. H., and McGeer, E. G. The central cholinergic system studied by choline acetyltransferase immunohistochemistry in the cat. J. Comp. Neurol. 200:151–201, 1981.

    Article  PubMed  CAS  Google Scholar 

  • Kuhar, M. J. Autoradiographic localization of drug and neurotransmitter receptors in the brain. Trends Neurosa. 4:60–64, 1981.

    Article  CAS  Google Scholar 

  • LaMotte, C., Pert, C. B., and Snyder, S. H. Opiate receptor binding in primate spinal cord: Distribution and changes after dorsal root section. Brain Res. 112:407–412, 1976.

    Article  PubMed  CAS  Google Scholar 

  • Leyson, J. E., Gommeren, W., and Niemegeers, C.J. E. [3H]Sufentanil, a superior ligand for μ-opiate receptors: Binding properties and regional distribution in rat brain and spinal cord. Eur. J. Pharmacol. 87:209–225, 1983.

    Article  Google Scholar 

  • Light A. R., and Perl, E. R. Spinal termination of functionally identified primary afferent neurons with slowly conducting myelinated fibers. J. Comp. Neurol. 186:133–150, 1979.

    Article  PubMed  CAS  Google Scholar 

  • Light, A. R., Kavookjian, A. M., and Petrusz, P. The ultrastructure and synaptic connections of serotonin-immunoreactive terminals in spinal laminae I and II. Somatosens. Res. 1:33–50, 1983.

    Article  PubMed  CAS  Google Scholar 

  • Ljungdahl, A., Hökfelt, T., and Nilsson, G. Distribution of substance P-like immunoreactivity in the central nervous system of the rat. I. Cell bodies and nerve terminals. Neuroscience 3:861–943, 1978.

    Article  PubMed  CAS  Google Scholar 

  • Lord, J. A. H., Waterfield, A. A., Hughes, J., and Kosterlitz, H. W. Endogenous opioid peptides: Multiple agonists and receptors. Nature 267:495–499, 1977.

    Article  PubMed  CAS  Google Scholar 

  • Maurin, Y., Buck, S. H., Wamsley, J. K., Burks, T. F., and Yamamura, H. I. Light microscopic autoradiographic localization of [3H]substance P binding sites in rat thoracic spinal cord. Life Sci. 34:1713–1716, 1984.

    Article  PubMed  CAS  Google Scholar 

  • McLaughlin, B. J., Barber, R., Saito, K., Roberts, E., and Wu, J. Y. Immunohistochemical localization of glutamate decarboxylase in rat spinal cord. J. Comp. Neurol. 164:305–322,1975.

    Article  PubMed  CAS  Google Scholar 

  • Monaghan, D. T., and Coiman, C. W. The distribution of [3H]kainic acid binding sites in rat CNS as determined by autoradiography. Brain Res. 252:91–100, 1982.

    Article  PubMed  CAS  Google Scholar 

  • Morita, K., and Katayama, Y. TWO types of acetylcholine receptors on the soma of primary afferent neurons. Brain Res. 290:348–352, 1984.

    Article  PubMed  CAS  Google Scholar 

  • Mudge, A. W., Leeman, S. E., and Fischbach, G. D. Enkephalin inhibits release of substance P from sensory neurons in culture and decreases action potential duration. Proc. Natl. Acad. Sci. U.S.A. 76:526–530, 1979.

    Article  PubMed  CAS  Google Scholar 

  • Nagy, J. I., Vincent, S. R., Staines, W. M. A., Fibiger, H. C., Reisine, T. D., and Yamamura, H. I. Neurotoxic action of capsaicin on spinal substance P neurons. Brain Res. 186:435–444, 1980.

    Article  PubMed  CAS  Google Scholar 

  • Nahin, R. L., Madsen, A. M., and Giesler, G. J., Jr. Anatomical and physiological studies of the gray matter surrounding the spinal cord central canal. J. Comp. Neurol. 220:321–335, 1983.

    Article  PubMed  CAS  Google Scholar 

  • Ninkovic, M., Hunt, S. P., and Kelly, J. S. Effect of dorsal rhizotomy on autoradiographic distribution of opiate and neurotensin receptors and neurotensin-like immunoreactivity within the rat spinal cord. Brain Res. 230:111–119, 1981.

    Article  PubMed  CAS  Google Scholar 

  • Ninkovic, M., Hunt, S. P., and Gleave, J. R. W. Localization of opiate and histamine Hi-receptors in the primate sensory ganglia and spinal cord. Brain Res. 241:197–206, 1982.

    Article  PubMed  CAS  Google Scholar 

  • Palacios, J. M., Wamsley, J. K., and Kuhar, M. J. High affinity Gaba receptors-autoradiographic localization. Brain Res. 222:285–307, 1981.

    Article  PubMed  CAS  Google Scholar 

  • Paxinos, G., and Watson, C. The Rat Brain in Stereotaxic Coordinates, Academic Press, Sydney, 1982.

    Google Scholar 

  • Pearson, J., Brandeis, L., Simon, E., and Hiller, J. Radioautography of binding of tritiated diprenorphine to opiate receptors in the rat. Life Sci. 26:1047–1052, 1980.

    Article  PubMed  CAS  Google Scholar 

  • Peroutka, S. J., Lebovitz, R. M., and Snyder, S. H. Two distinct central serotonin receptors with different physiological functions. Science 212:828–829, 1981.

    Article  Google Scholar 

  • Pert, C. B., Kuhar, M. J., and Snyder, S. H. Autoradiographic localization of the opiate receptor in rat brain. Life Sci. 16:1849–1854, 1975.

    Article  PubMed  CAS  Google Scholar 

  • Pert, C. B., Kuhar, M. J., and Snyder, S. H. Opiate receptor: Autoradiographic localization in rat brain. Proc. Natl. Acad. Sci. U.S.A. 73:3729–3733, 1976.

    Article  PubMed  CAS  Google Scholar 

  • Polz-Tejera, G., Hunt, S. P., and Schmidt, J. Nicotinic receptors in sensory ganglia. Brain Res. 195:223–230, 1980.

    Article  PubMed  CAS  Google Scholar 

  • Price, G. W., Wilkin, G. P., Turnbull, M. J., and Bowery, N. G. Are baclofen-sensitive Gaba β receptors present on primary afferent terminals of the spinal cord? Nature 307:71–74, 1984.

    Article  PubMed  CAS  Google Scholar 

  • Ribeiro-Da-Silva, A., and Coimbra, A. Neuronal uptake of [3H]Gaba and [3H]glycine in laminae I-III(substantia gelatinosa Rolandi) of the rat spinal cord. An autoradiographic study. Brain Res. 188:449–464, 1980.

    Article  PubMed  CAS  Google Scholar 

  • Ruda, M. A. Opiates and pain pathways: Demonstration of enkephalin synapses on dorsal projection neurons. Science 215:1523–1525, 1982.

    Article  PubMed  CAS  Google Scholar 

  • Ruda, M. A., and Gobel, S. Ultrastructural characteriation of axonal endings in the substantia gelatinosa which take up [3H]serotonin. Brain Res. 184:57–83, 1980.

    Article  PubMed  CAS  Google Scholar 

  • Sasek, C. A., Seybold, V. S., and Elde, R. P. The immunohistochemical localization of nine peptides in the sacral parasympathetic nucleus and the dorsal gray commissure in rat spinal cord. Neuroscience 12:855–873, 1984.

    Article  PubMed  CAS  Google Scholar 

  • Satoh, K., Kashiba, A., Kimura, H., and Maeda, T. Noradrenergic axon terminals in the substantia gelatinosa of the rat spinal cord. Cell Tissue Res. 222:359–378, 1982.

    Article  PubMed  CAS  Google Scholar 

  • Segu L., and Calas, A. The topographical distribution of serotoninergic terminals in the spinal cord of the cat: Quantitative radioautographic studies. Brain Res. 153:449–464, 1978.

    Article  PubMed  CAS  Google Scholar 

  • Seybold, V., and Elde, R. Receptor autoradiography in thoracic spinal cord: Correlation of neurotransmitter binding sites with sympathoadrenal neurons. J. Neurosci. 10:2533–2542, 1984.

    Google Scholar 

  • Seybold, V., and Maley, B. Ultrastructural localization of neurotensin-like immunoreactivity in the superficial laminae of the rat dorsal horn. Peptides 5:1179–1189, 1984.

    Article  PubMed  CAS  Google Scholar 

  • Singer E., and Placheta, P. Reduction of [3H]muscimol binding sites in rat dorsal spinal cord after neonatal capsaicin treatment. Brain Res. 202:484–487, 1980.

    Article  PubMed  CAS  Google Scholar 

  • Slater, P., and Patel, S. Autoradiographic localization of opiate kappa receptors in the rat spinal cord. Eur. J. Pharmacol. 92:159–160, 1983.

    Article  PubMed  CAS  Google Scholar 

  • Sparber, S. B., and Meyer, D. R. Clonidine antagonizes naloxone-induced suppression of conditioned behavior and body weight loss in morphine-dependent rats. Pharmacol. Biochem. Behav. 9:319–325, 1978.

    Article  PubMed  CAS  Google Scholar 

  • Steinbusch, H. W. M. Distribution of serotonin-immunoreactivity in the central nervous system of the rat—cell bodies and terminals. Neuroscience 6:557–618, 1981.

    Article  PubMed  CAS  Google Scholar 

  • Sumai., K. K., Pickel, V. M., Miller, R. J., and Reis, D. J. Enkephalin-containing neurons in substantia gelatinosa of spinal trigeminal complex: Ultrastructure and synaptic interaction with primary sensory Afferents. Brain Res. 248:223–236, 1982.

    Article  Google Scholar 

  • Taylor, J. E., Yaksh, T. L., and Richelson, E. Histamine H1 receptors in the brain and spinal cord of the cat. Brain Res. 243:391–394, 1982.

    Article  PubMed  CAS  Google Scholar 

  • Traynor, J. R., Kelly, P. D., and Range, M. J. Multiple opiate binding sites in rat spinal cord. Life Sci. 31:1377–1380, 1982.

    Article  PubMed  CAS  Google Scholar 

  • Tuschscherer, M. M., and Seybold, V. Immunohistochemical studies of substance P, cholecys-tokinin-betapeptide and somatostatin in dorsal root ganglia of the rat. Neuroscience 14:593–605, 1985.

    Article  Google Scholar 

  • Wamsley, J. K., Lewis, M. S., Young, W. S. III, and Kuhar, M.J. Autoradiographic localization of muscarinic cholinergic receptors in rat brainstem. J. Neurosci. 1:176–191, 1981a.

    PubMed  CAS  Google Scholar 

  • Wamsley, J. K., Zarbin, M. A., and Kuhar, M. J. Muscarinic cholinergic receptors flow in the sciatic nerve. Brain Res. 217:155–161, 1981b.

    Article  PubMed  CAS  Google Scholar 

  • Wamsley, J. K., Zarbin, M. A., Young, W. S. III, and Kuhar, M. J. Distribution of opiate receptors in the monkey brain: An autoradiographic study. Neuroscience 7:595–613, 1982.

    Article  PubMed  CAS  Google Scholar 

  • Westlund, K. N., and Coulter, J. D. Descending projections of the locus coeruleus and sub-coeruleus/medial parabrachial nuclei in monkey: Axonal transport studies and dopamine-B-hydroxylase immunohistochemistry. Brain Res. Rev. 2:235–264, 1980.

    Article  CAS  Google Scholar 

  • Yaksh, T. L., Jessell, T. M., Gamse, R., Mudge, A. W., and Leeman, S. E. Intrathecal morphine inhibits substance P release from mammalian spinal cord in vivo. Nature 286:155–157, 1980.

    Article  PubMed  CAS  Google Scholar 

  • Yaksh, T. L., Sghmauss, C., Migevych, P. E., Abay, E. O., and Go, V. L. W. Pharmacological studies on the application, disposition and release of neurotensin in the spinal cord. Ann. N.Y. Acad. Sci. 400:228–247, 1982.

    Article  PubMed  CAS  Google Scholar 

  • Yamamura, H. I., Wamsley, J. K., Deshmukh, P., and Roeske, W. R. Differential light microscopic autoradiographic localization of muscarinic cholinergic receptors in the brainstem and spinal cord of the rat using [3h]pirenzepine. Eur. J. Pharmacol. 91:147–149, 1983.

    Article  PubMed  CAS  Google Scholar 

  • Young, W. S. III, and Kuhar, M. J. A new method for receptor autoradiography: [3H]Opioid receptors in rat brain. Brain Res. 179:255–270, 1979a.

    Article  PubMed  CAS  Google Scholar 

  • Young, W. S. III, and Kuhar, M.J. Neurotensin receptors: Autoradiographic localization in rat CNS. Eur. J. Pharmacol. 59:161–163, 1979b.

    Article  PubMed  Google Scholar 

  • Young, W. S. III, and Kuhar, M. J. Noradrenergic alpha-1 and alpha-2 receptors: Autoradiographic visualization. Eur. J. Pharmacol. 59:317–319, 1979c.

    Article  PubMed  CAS  Google Scholar 

  • Young, W. S. III, and Kuhar, M.J. Radiohistochemical localization of benzodiazepine receptors in rat brain. J. Pharmacol. Exp. Ther. 212:337–346, 1980a.

    PubMed  CAS  Google Scholar 

  • Young, W. S. III, and Kuhar, M. J. Serotonin receptor localization in rat brain by light microscopic autoradiography. Eur. J. Pharmacol. 62:237–239, 1980b.

    Article  PubMed  CAS  Google Scholar 

  • Young, W. S. III, and Kuhar, M. J. Neurotensin receptor localization by light microscopic autoradiography in rat brain. Brain Res. 206:273–285, 1981.

    Article  PubMed  CAS  Google Scholar 

  • Young, W. S. III, Wamsley, J. K., Zarbin, M. A., and Kuhar, M. J. Opioid receptors undergo axonal flow. Science 210:76–77, 1980.

    Article  PubMed  CAS  Google Scholar 

  • Zarbin, M. A., Wamsley, J. K., and Kuhar, M. J. Glycine receptor: Light microscopic autoradiographic localization with [3H]strychnine. J. Neurosci. 1:532–547, 1981.

    PubMed  CAS  Google Scholar 

  • Zarbin, M. A., Innis, R. B., Wamsley, J. K., Snyder, S. H., and Kuhar, M.J. Autoradiograpahic localization of cholecystokinin receptors in rodent brain. J. Neurosci. 3:877–906, 1983.

    PubMed  CAS  Google Scholar 

  • Zivin, J. A., Reid, J. L., Saavedra, J. M., and Kopin, I. J. Quantitative localization of biogenic amines in the spinal cord. Brain Res. 99:293–301, 1975.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer Science+Business Media New York

About this chapter

Cite this chapter

Seybold, V.S. (1986). Neurotransmitter Receptor Sites in the Spinal Cord. In: Yaksh, T.L. (eds) Spinal Afferent Processing. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-4994-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-4994-5_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-4996-9

  • Online ISBN: 978-1-4684-4994-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics