Skip to main content

Control Systems for Nociceptive Afferent Processing

The Descending Inhibitory Pathways

  • Chapter
Book cover Spinal Afferent Processing

Abstract

Afferent transmission in the spinal cord is subject to regulation by supra-spinally located neurons. This concept originated with Sherrington and Sow-ton’s (1915) observation that transection of the spinal cord in decerebrate cats enhanced the flexion reflex and was developed further by Lundberg and associates in their studies of flexor reflex afferents (Eccles and Lundberg, 1959; Holmqvist and Lundberg, 1959, 1961). Although these early studies emphasized the effects of descending inhibitory control systems on motor function [see Willis (1982) and Lundberg (1982) for review], later studies demonstrated that this concept also applied to sensory function. Thus, Wall (1967) observed that cold block of the spinal cord in decerebrate cats not only enhanced the spontaneous activity of previously quiescent dorsal horn neurons but also augmented their response to peripheral stimuli. Similar observations were made by other laboratories with the additional finding that the inhibition appeared to be selective for the dorsal horn neurons’ responses to noxious, as opposed to nonnoxious, stimuli (Besson et al., 1975; Handwerker et al., 1975; Duggan et al., 1977a; Soja and Sinclair, 1983).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abols, I. A., and Basbaum, A. I. Afferent connections of the rostral medulla of the cat: A neural substrate for midbrain—medullary interactions in the modulation of pain. J. Comp. Neurol. 201:285–297, 1981.

    PubMed  CAS  Google Scholar 

  • Akaike, A., Shibata, T., Satoh, M., and Takagi, H. Analgesia induced by microinjection of morphine into, and electrical stimulation of, the nucleus reticularis paragigantocellularis of rat medulla oblongata. Neuropharmacology 17:775–778, 1978.

    PubMed  CAS  Google Scholar 

  • Akil, H., and Mayer, D. J. Antagonism of stimulation-produced analgesia by pCPA, a serotonin synthesis inhibitor. Brain Res. 44:692–697, 1972.

    PubMed  CAS  Google Scholar 

  • Akil, H., Mayer, D. J., and Liebeskind, J. C. Antagonism of stimulation-produced analgesia by naloxone, a narcotic antagonist. Science 191:961–962, 1975.

    Google Scholar 

  • Andersen, P., Eccles, J. C., and Sears, T. A. Cortically evoked depolarization of primary afferent fibers in the spinal cord. J. Neurophysiol. 27:63–77, 1964.

    PubMed  CAS  Google Scholar 

  • Anderson, S. D., Basbaum, A. I., and Fields, H. L. Response of medullary raphe neurons to peripheral stimulation and to systemic administration. Brain Res. 123:363–368, 1977.

    PubMed  CAS  Google Scholar 

  • Andrezik, J. A., Chan-Palay, V., and Palay, S. L. The nucleus paragigantocellularis lateralis in the rat. Conformation and cytology. Anat. Embryol. 161:335–371, 1981.

    Google Scholar 

  • Applebaum, A. E., Leonard, R. B., Kenshalo, D. R., Jr., Martin, R. F., and Willis, W. D. Nuclei in which functionally identified spinothalamic tract neurons terminate. J. Comp. Neurol. 188:575–586, 1979.

    PubMed  CAS  Google Scholar 

  • Armand, J. The origin, course and terminations of corticospinal fibers in various mammals. Prog. Brain Res. 57:329–360, 1982.

    PubMed  CAS  Google Scholar 

  • Basbaum, A. I., and Fields, H. L. The origin of descending pathways in the dorsolateral funiculus of the spinal cord of the cat and rat: Further studies on the anatomy of pain modulation. J. Comp. Neurol. 187:513–532, 1979.

    PubMed  CAS  Google Scholar 

  • Basbaum, A. I., Marley, N. J. E., O’keefe, J., and Clanton, C. H. Reversal of morphine and stimulus-produced analgesia by subtotal spinal cord lesions. Pain 3:43–56, 1977.

    PubMed  CAS  Google Scholar 

  • Basbaum, A. I., Clanton, C. H., and Fields, H. L. Three bulbospinal pathways from the rostral medulla of the cat: An autoradiographic study of pain modulating systems. J. Comp. Neurol. 178:209–224, 1978.

    PubMed  CAS  Google Scholar 

  • Beall, J. E., Martin, R. F., Applebaum, A. E., and Willis, W. D. Inhibition of primate spino-thalamic tract neurons by stimulation in the region of the nucleus raphe magnus. Brain Res. 114:328–333, 1976.

    PubMed  CAS  Google Scholar 

  • Behbehani, M. M., and Fields, H. L. Evidence that an excitatory connection between the periaqueductal gray and nucleus raphe magnus mediates stimulation-produced analgesia. Brain Res. 170:85–93, 1979.

    PubMed  CAS  Google Scholar 

  • Beitz, A. J. The nuclei of origin of brain stem enkephalin and substance P projections to the rodent nucleus raphe magnus. Neuroscience 7:2753–2768, 1982a.

    PubMed  CAS  Google Scholar 

  • Beitz, A. J. The sites of origin of brain stem neurotensin and serotonin projections to the rodent nucleus raphe magnus. J. Neurosci. 2:829–842, 1982b.

    PubMed  CAS  Google Scholar 

  • Beitz, A. J. The nuclei of origin of brainstem serotonergic projections to the rodent spinal trigeminal nucleus. Neurosci. Lett. 32:223–228, 1982c.

    PubMed  CAS  Google Scholar 

  • Beitz, A. J., Wells, W. E., and Shepard, R. D. The location of brainstem neurons which project bilaterally to the spinal trigeminal nuclei as demonstrated by the double fluorescent retrograde tracer technique. Brain Res. 258:305–312, 1983.

    PubMed  CAS  Google Scholar 

  • Belcher, G., Ryall, R. W., and Schaffner, R. The differential effects of 5-hydroxytryptamine, noradrenaline and raphe stimulation on nociceptive and non-nociceptive dorsal horn inter-neurones in the cat. Brain Res. 151:307–321, 1978.

    PubMed  CAS  Google Scholar 

  • Bennett, C. J., and Mayer, D. J. Inhibition of spinal cord interneurons by narcotic microinjection and focal electrical stimulation in the periaqueductal central gray matter. Brain Res. 172:243–257, 1979.

    PubMed  CAS  Google Scholar 

  • Berk, M. L., and Finkelstein, J. A. Efferent connections of the lateral hypothalamic area of the rat: An autoradiographic investigation. Brain Res. Bull. 8:511–526, 1982.

    PubMed  CAS  Google Scholar 

  • Berman, A. L. The Brain Stem of the Cat. A Cytoarchitectonic Atlas with Stereotaxic Coordinates, University of Wisconsin Press, Madison, 1968.

    Google Scholar 

  • Besson, J. M., Guilbaud, G., and Lebars, D. Descending inhibitory influences exerted by the brainstem upon the activities of dorsal horn lamina V cells induced by intra-arterial injection of bradykinin into the limbs. J. Physiol. (Lond.) 248:725–739, 1975.

    CAS  Google Scholar 

  • Black, P., Cianci, S. N., and Markowitz, R. S. Alleviation of pain by hypothalamic stimulation in the monkey. Confin. Neurol. 34:374–381, 1972.

    Google Scholar 

  • Bobillier, P., Seguin, S., Petitjean, F., Salvert, D., Touret, M., and Jouvet, M. The raphe nuclei of the cat brain stem: A topographical atlas of their efferent projections as revealed by autoradiography. Brain Res. 113:449–186, 1976.

    PubMed  CAS  Google Scholar 

  • Bourgoin, S., Oliveras, J. L., Bruxelle, J., Hamon, M., and Besson, J. M. Electrical stimulation of the nucleus raphe magnus in the rat. Effects on 5-HT metabolism in the spinal cord. Brain Res. 194:377–389, 1980.

    PubMed  CAS  Google Scholar 

  • Bowker, R. M., Westlund, K. N., and Coulter, J. D. Serotonergic projections to the spinal cord from the midbrain in the rat: An immunocytochemical and retrograde transport study. Neurosci. Lett. 24:221–226, 1981.

    PubMed  CAS  Google Scholar 

  • Bowker, R. M., Westlund, K. N., Sullivan, M. C., and Coulter, J. D. Organization of descending serotonergic projections to the spinal cord. Prog. Brain Res. 57:239–265, 1982a.

    PubMed  CAS  Google Scholar 

  • Bowker, R. M., Westlund, K. N., Sullivan, M. C., Wilber, J. F., and Coulter, J. D. Transmitters of the raphe-spinal complex: Immunocytochemical studies. Peptides 3:291–298, 1982b.

    PubMed  CAS  Google Scholar 

  • Bowker, R. M., Westlund, K. N., Sullivan, M. C., Wilber, J. F., and Coulter, J. D. Descending serotonergic, peptidergic and cholinergic pathways from the raphe nuclei: A multiple transmitter complex. Brain Res. 288:33–48, 1983.

    PubMed  CAS  Google Scholar 

  • Brodal, A., Taber, E., and Walberg, F. The raphe nuclei of the brain stem in the cat. II. Efferent connections. J. Camp. Neurol 114:239–259, 1960.

    Google Scholar 

  • Brodie, M. S., and Proudfit, H. K. Hypoalgesia induced by the local injection of carbachol into the nucleus raphe magnus. Brain Res. 291:337–342, 1984.

    PubMed  CAS  Google Scholar 

  • Carlton, S. M., Leichnetz, G. R., Young, E. G., and Mayer, D. J. Supramedullary afferents of the nucleus raphe magnus in the rat: A study using the transcannula HRP gel and autoradiographic techniques, J. Comp. Neurol. 214:43–58, 1983.

    PubMed  CAS  Google Scholar 

  • Carpenter, D., Lundberg, A., and Norrsell, U. Primary afferent depolarization evoked from the sensorimotor cortex. Acta Physiol Scand. 59:126–142, 1963.

    PubMed  CAS  Google Scholar 

  • Carstens, E. Inhibition of spinal dorsal horn neuronal responses to noxious skin heating by medial hypothalamic stimulation in the cat. J. Neurophysiol. 48:808–822, 1982.

    PubMed  CAS  Google Scholar 

  • Carstens, E., Klump, D., and Zimmerman, M. The opiate antagonist, naloxone, does not affect descending inhibition from midbrain of nociceptive spinal neuronal discharges in the cat. Neurosci. Lett. 11:323–327, 1979.

    PubMed  CAS  Google Scholar 

  • Carstens, E., Bihl, H., Irvine, F., and Zimmermann, M. Descending inhibition from medial and lateral midbrain of spinal dorsal horn neuronal responses to noxious and nonnoxious cutaneous stimuli in the cat. J. Neurophysiol. 45:1029–1042, 1981a.

    PubMed  CAS  Google Scholar 

  • Carstens, E., Fraunhoffer, M., and Zimmerman, M. Serotonergic mediation of descending inhibition from midbrain periaqueductal gray, but not reticular formation, of spinal nociceptive transmission in the cat. Pain 10:149–167, 1981b.

    PubMed  CAS  Google Scholar 

  • Carstens, E., MacKinnon, J. D., and Guinan, M. J. Inhibition of spinal dorsal horn neuronal responses to noxious skin heating by medial preoptic and septal stimulation in the cat. J. Neurophysiol. 48:981–991, 1982.

    PubMed  CAS  Google Scholar 

  • Carstens, E., Fraunhoffer, M., and Suberg, S. N. Inhibition of spinal dorsal horn neuronal responses to noxious skin heating by lateral hypothalamus stimulation. J. Neurophysiol. 50:192–204, 1983a.

    PubMed  CAS  Google Scholar 

  • Carstens, E., MacKinnon, J. D., and Guinan, M. J. Serotonin involvement in descending inhibition of spinal nociceptive transmission produced by stimulation of medial diencephalon and basal forebrain. J. Neurosci. 3:2112–2120, 1983b.

    PubMed  CAS  Google Scholar 

  • Castiglioni, A. J., Gallaway, M. C., and Coulter, J. D. Spinal projections from the midbrain in monkey. J. Comp. Neurol. 178:329–346, 1978.

    PubMed  CAS  Google Scholar 

  • Catsman-Berrevoets, C. E., and Kuypers, H. G. J. M. A search for corticospinal collaterals to thalamus and mescencephalon by means of multiple retrograde fluorescent tracers in cat and rat. Brain Res. 218:15–33, 1981.

    PubMed  CAS  Google Scholar 

  • Chan-Palay, V. Combined immunocytochemistry and autoradiography after in vivo injections of monoclonal antibody to substance P and 3H-serotonin. Anat. Embryol. 156:241–255, 1979.

    PubMed  CAS  Google Scholar 

  • Conrad, L. C. A., and Pfaff, D. W. Efferents from medial basal forebrain and hypothalamus in the rat. I. An autoradiographic study of the medial preoptic area. J. Comp. Neurol. 169:185–220, 1976a.

    PubMed  CAS  Google Scholar 

  • Conrad, L. C. A., and Pfaff, D. W. Efferents from medial basal forebrain and hypothalamus in the rat. II. An autoradiographic study of the anterior hypothalamus. J. Comp. Neurol. 169:221–262, 1976b.

    PubMed  CAS  Google Scholar 

  • Coulter, J. D., and Jones, E. G. Differential distribution of corticospinal projections from individual cytoarchitectonic fields in the monkey. Brain Res. 129:335–340, 1977.

    PubMed  CAS  Google Scholar 

  • Coulter, J. D., Maunz, R. A., and Willis, W. D. Effects of stimulation of sensorimotor cortex on primate spinothalamic neurons. Brain Res. 65:351–356, 1974.

    PubMed  CAS  Google Scholar 

  • Cox, V. C., and Valenstein, E. S. Attenuation of aversive properties of peripheral shock by hypothalamic stimulation. Science 149:323–325, 1965.

    PubMed  CAS  Google Scholar 

  • Crutcher, K. A., Humbertson, A. D., Jr., and Martin, G. F. The origin of brainstem-spinal pathways in the North American opossum (Didelphis virginiana). Studies using the horseradish peroxidase method. J. Comp. Neurol. 179:169–194, 1978.

    PubMed  CAS  Google Scholar 

  • Dahlstrom, A., and Fuxe, K. Evidence for the existence of monoamine neurons in the central nervous system. II. Experimentally induced changes in the intraneuronal amine levels of the bulbospinal neuron systems. Acta Physiol. Scand. [Suppl.] 247:1–36, 1965.

    Google Scholar 

  • Dickenson, A. H., Oliveras, J. L., and Besson, J. M. Role of the nucleus raphe magnus in opiate analgesia as studied by the microinjection technique in the rat. Brain Res. 170:95–111, 1979.

    PubMed  CAS  Google Scholar 

  • Dostrovsky, J. O., Shah, Y., and Gray, B. G. Descending inhibitory influences from peria-queductal gray, nucleus raphe magnus, and adjacent reticular formation. II. Effects on medullary dorsal horn nociceptive and non-nociceptive neurons. J. Neurophysiol. 49:948–960, 1983.

    PubMed  CAS  Google Scholar 

  • Duggan, A. W., and Griersmith, B. T. Inhibition of the spinal transmission of nociceptive information by supraspinal stimulation in the cat. Pain 6:149–161, 1979.

    PubMed  CAS  Google Scholar 

  • Duggan, A. W., and Morton, C. R. Periaqueductal grey stimulation: An association between selective inhibition of dorsal horn neurones and changes in peripheral circulation. Pain 15:237–248, 1983.

    PubMed  CAS  Google Scholar 

  • Duggan, A. W., Hall, J. G., Headley, P. M., and Griersmith, B. T. The effect of naloxone on the excitation of dorsal horn neurones of the cat by noxious and non-noxious cutaneous stimuli. Brain Res. 138:185–189, 1977a.

    PubMed  CAS  Google Scholar 

  • Duggan, A. W., Hall, J. G., and Headley, P. M. Enkephalins and dorsal horn neurones of the cat: Effects on responses to noxious and innocuous skin stimuli. Br.J. Pharmacol. 61:399–408, 1977b.

    PubMed  CAS  Google Scholar 

  • Eccles, R. M., and Lundberg, A. Supraspinal control of interneurons mediating spinal reflexes. J. Physiol. (Lond.) 147:565–584, 1959.

    CAS  Google Scholar 

  • Edeson, R. O., and Ryall, R. W. Systematic mapping of descending inhibitory control by the medulla of nociceptive spinal neurones in cats. Brain Res. 271:251–262, 1983.

    PubMed  CAS  Google Scholar 

  • Fields, H. L., and Anderson, S. D. Evidence that raphe-spinal neurons mediate opiate and midbrain stimulation-produced analgesia. Pain 5:333–349, 1978.

    PubMed  CAS  Google Scholar 

  • Fields, H. L., Basbaum, A. I., Clanton, C. H., and Anderson, S. D. Nucleus raphe magnus inhibition of spinal cord dorsal horn neurons. Brain Res. 126:441–53, 1977.

    PubMed  CAS  Google Scholar 

  • Fifkova, E., and Marsala, J. Stereotaxic atlases for the cat, rabbit and rat, in: Electrophysiological Methods in Biological Research (J. Bures, M. Petran, and J. Zacher, eds.), Academia, Prague, 1967, pp. 653–731.

    Google Scholar 

  • Finley, J. C. W., Maderdrut, J. L., and Petrusz, P. The immunocytochemical localization of enkephalin in the central nervous system of the rat. J. Comp. Neurol. 198:541–565, 1981.

    PubMed  CAS  Google Scholar 

  • Frankfurt, M., Lauder, J. M., and Azmitia, E. C. The immunocytochemical localization of serotonergic neurons in the rat hypothalamus. Neurosci. Lett. 24:227–232, 1981.

    PubMed  CAS  Google Scholar 

  • Gallager, D. W., and Pert, A. Afferents to brain stem nuclei (brain stem raphe, nucleus reticularis pontis caudalis and nucleus gigantocellularis) in the rat as demonstrated by microiontophoretically applied horseradish peroxidase. Brain Res. 144:257–275, 1978.

    PubMed  CAS  Google Scholar 

  • Gerhart, K. D., Wilcox, T. K., Chung, J. M., and Willis, W. D. Inhibition of nociceptive and non-nociceptive responses of primate spinothalamic cells by stimulation in medial brainstem. J. Neurophysiol. 45:121–136, 1981a.

    PubMed  CAS  Google Scholar 

  • Gerhart, K. D., Yezierski, R. P., Wilcox, T. K., Grossman, A. E., and Willis, W. D. Inhibition of primate spinothalamic tract neurons by stimulation in ipsilateral or contralateral ventral posterior lateral (VPLc) thalamic nucleus. Brain Res. 229:514–519, 1981b.

    PubMed  CAS  Google Scholar 

  • Gerhart, K. D., Yezierski, R. P., Fang, Z. R., and Willis, W. D. Inhibition of primate spinothalamic tract neurons by stimulation in the ventral posterior lateral (VPLc) thalamic nucleus: Possible mechanisms. J. Neurophysiol. 49:406–423, 1983.

    PubMed  CAS  Google Scholar 

  • Giesler, G. J., Jr., Gerhart, K. D., Yezierski, R. P., Wilcox, T. K., and Willis, W. D. Post-synaptic inhibition of primate spinothalamic neurons by stimulation in nucleus raphe magnus. Brain Res. 204:184–188, 1981a.

    PubMed  Google Scholar 

  • Giesler, G. J., Jr., Yezierski, R. P., Gerhart, K. D., and Willis, W. D. Spinothalamic tract neurons that project to medial and/or lateral thalamic nuclei: Evidence for a physiologically novel population of spinal cord neurons. J. Neurophysiol. 46:1285–1308, 1981b.

    PubMed  Google Scholar 

  • Glazer, F. J., Steinbusch, H., Verhofstad, A., and Basbaum, A. I. Serotonin neurons in nucleus raphe dorsalis and paragigantocellularis of the cat contain enkephalin. J. Physiol. (Paris) 77:241–245, 1981.

    CAS  Google Scholar 

  • Goldstein, A., and Ghazarossian, V. E. Immunoreactive dynorphin in pituitary and brain. Proc. Natl. Acad, Sci. U.S.A. 77:6207–6210, 1980.

    CAS  Google Scholar 

  • Goodman, S. J., and Holcombe, V. Selective and prolonged analgesia in monkey resulting from brain stimulation. Pain Res. Ther. 1:495–502, 1976.

    Google Scholar 

  • Gray, B. G., and Dostrovsky, J. O. Descending inhibitory influences from periaqueductal gray, nucleus raphe magnus, and adjacent reticular formation. I. Effects on lumbar spinal cord nociceptive and non-nociceptive neurons. J. Neurophysiol. 49:932–947, 1983.

    PubMed  CAS  Google Scholar 

  • Grofova, I., Ottersex, O. P., and Rinvik, E. Mesencephalic and diencephalic afferents to the superior colliculus and periaqueductal gray substance demonstrated by retrograde axonal transport of horseradish peroxidase in the cat. Brain Res. 146:205–220, 1978.

    PubMed  CAS  Google Scholar 

  • Guilbaud, G., Besson, J. M., Oliveras, J. L., and Liebeskind, J. C. Suppression by LSD of the inhibitory effect exerted by dorsal raphe stimulation on certain spinal cord interneurons in the cat. Brain Res. 61:417–422, 1973.

    PubMed  CAS  Google Scholar 

  • Guilbaud, G., Oliveras, J. L., Giesler, G., Jr., and Besson, J. M. Effects induced bv stimulation of the centralis inferior nucleus of the raphe on dorsal horn interneurons in cat’s spinal cord. Brain Res. 126:355–360, 1977.

    PubMed  CAS  Google Scholar 

  • Gybels, J., Vanhees, J., and Peluso, F. Modulation of experimentally produced pain in man by electrical stimulation of some cortical, thalamic and basal ganglia structures. Pain Res. Ther. 1:475–478, 1976.

    Google Scholar 

  • Haber, L. H., Martin, R. F., Chatt, A. B., and Willis, W. D. Effects of stimulation in nucleus reticularis gigantocellularis on the activity of spinothalamic tract neurons in the monkey. Brain Res. 153:163–168, 1978.

    PubMed  CAS  Google Scholar 

  • Hagbarth, K.-E., and Kerr, D. I. B. Central influences on spinal afferent conduction. J. Neurophysiol. 17:295–307, 1954.

    PubMed  CAS  Google Scholar 

  • Haigler, H. J., and Mittleman, R. S. Analgesia produced by direct injection of morphine into the mesencephalic reticular formation. Brain Res. Bull. 3:655–662, 1978.

    PubMed  CAS  Google Scholar 

  • Hammond, D. L., and Yaksh, T. L. Antagonism of stimulation-produced antinociception by intrathecal administration of methysergide or phentolamine. Brain Res. 298:329–337, 1984.

    PubMed  CAS  Google Scholar 

  • Hammond, D. L., Levy, R. A., and Proudeit, H. K. Hypoalgesia following microinjection of noradrenergic antagonists in the nucleus raphe magnus. Pain 9:85–101, 1980a.

    PubMed  CAS  Google Scholar 

  • Hammond, D. L., Levy, R. A., and Proudfit, H. K. Hypoalgesia induced by microinjection of a norepinephrine antagonist in the nucleus raphe magnus: Reversal by intrathecal administration of a serotonin antagonist. Brain Res. 201:475–479, 1980b.

    PubMed  CAS  Google Scholar 

  • Hammond, D. L., Tyce, G. M., and Yaksh, T. L. Efflux of serotonin and noradrenaline into spinal cord superfusates during stimulation of the rat ventromedial medulla. J. Physiol. (Lond.) 359:151–162, 1985.

    CAS  Google Scholar 

  • Hancock, M. B. Cells of origin of hypothalamo—spinal projections in the rat. Neurosci. Lett. 3:179–184, 1976.

    PubMed  CAS  Google Scholar 

  • Handwerker, H. O, Iggo, A., and Zimmerman, M. Segmental and supraspinal actions on dorsal horn neurons responding to noxious and non-noxious skin stimuli. Pain 1:147–165, 1975.

    PubMed  CAS  Google Scholar 

  • Hayes, N. L., and Rustioni, A. Descending projections from brainstem and sensorimotor cortex to spinal enlargements in the cat. Exp. Brain Res. 41:89–107, 1981.

    PubMed  CAS  Google Scholar 

  • Hayes, R. L., Newlon, P. G., Rosecraxs, J. A., and Mayer, D. J. Reduction of stimulation-produced analgesia by lysergic acid diethylamide, a depressor of serotonergic neural activity. Brain Res. 122:367–372, 1977.

    PubMed  CAS  Google Scholar 

  • Hayes, R. L., Price, D. D., Ruda, M., and Dubner, R. Suppression of nociceptive responses in the primate by electrical stimulation of the brain or morphine administration: Behavioral and electrophysiological comparisons. Brain Res. 167:417–421, 1979.

    PubMed  CAS  Google Scholar 

  • Headley, P. M., Duggan, A. W., and Griersmith, B. T. Selective reduction by noradrenaline and 5-hydroxytryptamine of nociceptive responses of cat dorsal horn neurones. Brain Res. 145:185–189, 1978.

    PubMed  CAS  Google Scholar 

  • Hökfelt, T., Elde, R., Johansson, D., Terenius, L., and Stein, L. The distribution of en-kephalin-immunoreacitve cell bodies in the rat central nervous system. Neurosci. Lett. 5:25–31, 1977.

    PubMed  Google Scholar 

  • Hökfelt, T., Ljungdahl, A., Steinbusch, H., Verhofstad, A., Nilsson, G., Brodin, E., Pernow, B., and Goldstein, M. Immunohistochemical evidence of substance P-like immunoreactivity in some 5-hydroxytryptamine-containing neurons in the rat central nervous system. Neuroscience 3:517–538, 1978.

    PubMed  Google Scholar 

  • Hökfelt, T., Terenius, L., Kuypers, H. G. J. M., and Dann, O. Evidence for enkephalin immunoreactive neurons in the medulla oblongata projecting to the spinal cord. Neurosci. Lett. 14:55–60, 1979.

    PubMed  Google Scholar 

  • Holmqvist, B., and Lundberg, A. On the organization of the supraspinal inhibitory control of interneurons of various spinal reflex arcs. Arch. Ital. Biol. 97:340–356, 1959.

    Google Scholar 

  • Holmqvist, B., and Lundberg, A. Differential supraspinal control of synaptic actions evoked by volleys in the flexion afferents in alpha motoneurones. Acta Physiol. Scand. [Suppl.] 186:1–51, 1961.

    CAS  Google Scholar 

  • Holstege, G., and Kuypers, H. G. J. M. The anatomy of brain stem pathways to the spinal cord in cat. A labeled amino acid tracing study. Prog. Brain Res. 57:145–175, 1982.

    PubMed  CAS  Google Scholar 

  • Hongo, T., and Jankowska, E. Effects from the sensorimotor cortex on the spinal cord in cats with transected pyramids. Exp. Brain Res. 3:117–134, 1967.

    PubMed  CAS  Google Scholar 

  • Hosobuchi, Y., Adams, J. E., and Rutkin, B. Chronic thalamic stimulation for the control of facial anesthesia dolorosa. Arch. Neurol. 29:158–161, 1973.

    PubMed  CAS  Google Scholar 

  • Hosobuchi, Y., Adams, J. E., and Linchitz, R. Pain relief by electrical stimulation of the central gray matter in humans and its reversal by naloxone. Science 197:183–186, 1977.

    PubMed  CAS  Google Scholar 

  • Hosoya, Y. The distribution of spinal projection neurons in the hypothalamus of the rat, studied with the HRP method. Exp. Brain Res. 40:79–87, 1980.

    PubMed  CAS  Google Scholar 

  • Hosoya, Y., and Matsushita, M. Brainstem projections from the lateral hypothalamic area in the rat, as studied with autoradiography. Neurosci. Lett. 24:111–116, 1981.

    PubMed  CAS  Google Scholar 

  • Jacquet, Y. F., and Lajtha, A. Paradoxical effects after microinjection of morphine in the periaqueductal gray matter in the rat. Science 185:1055–1057, 1974.

    PubMed  CAS  Google Scholar 

  • Jensen, T., and Yaksh, T. L. Spinal monoamine and opiate systems partly mediate the antinociceptive effects produced by glutamate at brainstem sites. Brain Res. 321:287–297, 1985.

    Google Scholar 

  • Jordan, L. M., Kenshalo, D. R., Jr., Martin, R. F., Haber, L. H., and Willis, W. D. Depression of primate spinothalamic tract neurons by iontophoretic application of 5-hydroxytryptamine. Pain 5:135–142, 1978.

    PubMed  CAS  Google Scholar 

  • Jurna, I. Effect of stimulation in the periaqueductal grey matter on activity in ascending axons of the rat spinal cord: selective inhibition of activity evoked by afferent Aγ and C fibre stimulation and failure of naloxone to reduce inhibition. Brain Res. 196:33–42, 1980.

    PubMed  CAS  Google Scholar 

  • Kajander, K. C., Ebner, T. J., and Bloedel, J. R. Effects of periaqueductal gray and raphe magnus stimulation on the responses of spinocervical and other ascending projection neurons to non-noxious inputs. Brain Res. 291:29–37, 1984.

    PubMed  CAS  Google Scholar 

  • Kevetter, G. A., and Willis, W. D. Spinothalamic cells in the rat lumbar cord with collaterals to the medullary reticular formation. Brain Res. 238:181–185, 1982.

    PubMed  CAS  Google Scholar 

  • Khachaturian, H., Watson, S. J., Lewis, M. E., Coy, D., Goldstein, A., and Akil, H. Dynorphin immunocytochemistry in the cat central nervous system. Peptides 3:941–954, 1982.

    PubMed  CAS  Google Scholar 

  • Kneisley, L. W., Biber, M. P., and Lavail, J. H. A study of the origin of brain stem projections to monkey spinal cord using the retrograde transport method. Exp. Neurol. 60:116–139, 1978.

    PubMed  CAS  Google Scholar 

  • Kuraishi, Y., Fukui, K., Shiomi, H., Akaike, A., and Takagi, H. Microinjection of opioids into the nucleus reticularis gigantocellularis of the rat: Analgesia and increase in the normeta-nephrine level in the spinal cord. Biochem. Pharmacol. 27:2756–2758, 1978.

    PubMed  CAS  Google Scholar 

  • Kuraishi, Y., Harada, Y., and Takagi, H. Noradrenaline regulation of pain-transmission in the spinal cord meidated by α-adrenoceptors. Brain Res. 174:333–336, 1979a.

    PubMed  CAS  Google Scholar 

  • Kuraishi, Y., Harada, Y., Satoh, M., and Takagi, H. Antagonism by phenoxybenzamine of the analgesic effect of morphine injected into the nucleus reticularis gigantocellularis of the rat. Neuropharmacology 18:107–110, 1979b.

    PubMed  CAS  Google Scholar 

  • Kuypers, H. G. J. M. Central cortical projections to motor and somatosensory cell groups. Brain 83:161–187, 1960.

    PubMed  CAS  Google Scholar 

  • Kuypers, H. G. J. M., and Maisky, V. A. Retrograde axonal transport of horseradish peroxidase from spinal cord to brain stem cell groups in the cat. Neurosci. Lett. 1:9–14, 1975.

    PubMed  CAS  Google Scholar 

  • Kuypers, H. G. J. M., and Maisky, V. A. Funicular trajectories of descending brain stem pathways in cat. Brain Res. 136:159–165, 1977.

    PubMed  CAS  Google Scholar 

  • Lebars, D., Dickenson, A. H., and Besson, J. M. Microinjection of morphine within nucleus raphe magnus and dorsal horn neurone activities related to nociception in the rat. Brain Res. 189:476–481, 1980.

    Google Scholar 

  • Leichnetz. G. R., Watkins, L., Griffin, G., Murfin, R., and Mayer, D. J. The projection from nucleus raphe magnus and other brainstem nuclei to the spinal cord in the rat: A study using the HRP blue-reaction. Neurosci. Lett. 8:119–124, 1978.

    Google Scholar 

  • Lewis, V. A., and Gebhart, G. F. Evaluation of the periaqueductal central gray (PAG) as a morphine-specific locus of action and examination of morphine-induced and stimulation-produced analgesia at coincident PAG loci. Brain Res. 124:283–303, 1977.

    PubMed  CAS  Google Scholar 

  • Liebeskind, J. C., Guilbaud, G., Besson, J. M., and Oliveras, J.-L. Analgesia from electrical stimulation of the periaqueductal gray matter in the cat: Behavioral observations and inhibitory effects on spinal cord interneurons. Brain Res. 50:441–446, 1973.

    PubMed  CAS  Google Scholar 

  • Liu, C. N., and Chambers, W. W. An experimental study of the corticospinal system in the monkey (Macaca mulatta). J. Comp. Neurol. 123:257–284, 1964.

    PubMed  CAS  Google Scholar 

  • Lloyd, D. P. C. The spinal mecahnism of the pyramidal system in cats. J. Neurophysiol. 4:525–546, 1941.

    Google Scholar 

  • Lopachin, R. M., and Rudy, T. A. The thermoregulatory effects of noradrenaline, serotonin and carbachol injected into the rat spinal subarachnoid space. J. Physiol. (Lond.) 333:511–529, 1982.

    CAS  Google Scholar 

  • Lovick, T. A., and Wolstencroft, J. H. Projections from brain stem nuclei to the spinal trigeminal nucleus in the cat. Neuroscience 9:411–420, 1983.

    PubMed  CAS  Google Scholar 

  • Lovick, T. A., West, D. C., and Wolstencroft, J. H. Responses of raphespinal and other bulbar raphe neurones to stimulation of the periaqueductal gray in the cat. Neurosci. Lett. 8:45–49, 1978.

    PubMed  CAS  Google Scholar 

  • Lundberg, A. Inhibitory control from the brain stem of transmission from primary afferents to motoneurons, primary afferent terminals and ascending pathways, in: Brain Stem Control of Spinal Mechanisms (B. Sjolund and A. Bjorklund, eds.) Elsevier, Amsterdam, 1982, pp. 179–224.

    Google Scholar 

  • Lundberg, A., and Voorhoeve, P. Effects from the pyramidal tract on spinal reflex arcs. Acta Physiol. Scand. 56:201–219, 1962.

    PubMed  CAS  Google Scholar 

  • Lundberg, A., Norrsell, U., and Voorhoeve, P. Pyramidal effects on lumbo-sacral interneurones activated by somatic afferents. Acta Physiol. Scand. 56:220–229, 1962.

    PubMed  CAS  Google Scholar 

  • Mantyh, P. W. Connections of midbrain periaqueductal gray in the monkey. II. Descending efferent projections. J. Neurophysiol. 49:582–594, 1983.

    PubMed  CAS  Google Scholar 

  • Mantyh, P. W., and Hunt, S. P. Evidence for cholecystokinin-like imunoreactive neurons in the rat medulla oblongata which project to the spinal cord. Brain Res. 291:49–54, 1984.

    PubMed  CAS  Google Scholar 

  • Mantyh, P. W., and Peschanski, M. Spinal projections from the periaqueductal grey and dorsal raphe in the rat, cat and monkey. Neuroscience 7:2769–2776, 1982.

    PubMed  CAS  Google Scholar 

  • Martin, G. F., Cabana, T., Humbertson, A. O., Jr., Laxson, L. C., and Panneton, W. M. Spinal projections from the medullary reticular formation of the North American opossum: Evidence for connectional heterogeneity. J. Comp. Neurol. 196:663–682, 1981.

    PubMed  CAS  Google Scholar 

  • Martin, R. F., Jordan, L. M., and Willis, W. D. Differential projections of cat medullary raphe neurons demonstrated by retrograde labelling following spinal cord lesions. J. Comp. Neurol. 182:77–88, 1978.

    PubMed  CAS  Google Scholar 

  • Mayer, D. J., and Liebeskind, J. C. Pain reduction by focal electrical stimulation of the brain: An anatomical and behavioral analysis. Brain Res. 68:73–93, 1974.

    PubMed  CAS  Google Scholar 

  • Mazars, G. J., Merienne, L., and Ciolola, C. Comparative study of electrical stimulation of posterior thalamic nuclei, periaqueductal gray, and other midline mesencephalic structures in man. Pain Res. Ther. 3:541–546, 1979.

    Google Scholar 

  • McCreery, D. B., and Bloedel, J. R. Reduction of the response of cat spinothalamic neurons to graded mechanical stimuli by electrical stimulation of the lower brain stem. Brain Res. 97:151–156, 1975.

    PubMed  CAS  Google Scholar 

  • McCreery, D. B., Bloedel, J. R., and Hames, E. G. Effects of stimulating in raphe nuclei and in reticular formation on response of spinothalamic neurons to mechanical stimuli. J. Neurophysiol. 42:166–182, 1979.

    PubMed  CAS  Google Scholar 

  • Meessen, H., and Olszewski, J. A Cytoarchitectonic Atlas of the Rhombencephalon of the Rabbit, S. Karger, Basel, 1949.

    Google Scholar 

  • Mohrland, J. S., and Gebhart, G. F. Effects of focal electrical stimulation and morphine microinjection in the periaqueductal gray of the rat mesencephalon on neuronal activity in the medullary reticular formation. Brain Res. 201:23–37, 1980.

    PubMed  CAS  Google Scholar 

  • Moss, M. S., Glazer, E. J., and Basbaum, A. I. The peptidergic organization of the cat periaqueductal gray. I. The distribution of immunoreactive enkephalin-containing neurons and terminals. J. Neurosci. 3:603–616. 1983.

    PubMed  CAS  Google Scholar 

  • Murray, E. A., and Coulter, J. D., Organization of corticospinal neurons in the monkey. J. Comp. Neurol. 195:339–365, 1981.

    PubMed  CAS  Google Scholar 

  • Nilaver, G., Zimmerman, E. A., Wilkins, J., Michaels, J., Hoffman, D., and Silverman, A. J. Magnocellular hypothalamic projections to the lower brain stem and spinal cord of the rat. Neuroendocrinology 30:150–158, 1980.

    PubMed  CAS  Google Scholar 

  • Oleson, T. D., Twombly, D. A., and Liebeskind, J. C. Effects of pain attenuating brain stimulation and morphine on electrical activity in the raphe nuclei of the awake rat. Pain 4:211–230, 1978.

    PubMed  CAS  Google Scholar 

  • Oleson, T. D., Kirkpatrick, D. B., and Goodman, S. J. Elevation of pain threshold to tooth shock by brain stimulation in primates. Brain Res. 194:79–95, 1980.

    PubMed  CAS  Google Scholar 

  • Oliveras, J. L., Besson, J. M., Guilbaud, G., and Liebeskind, J. C. Behavioral and electrophysiological evidence of pain inhibition from midbrain stimulation in the cat. Exp. Brain Res. 20:32–44, 1974.

    PubMed  CAS  Google Scholar 

  • Oliveras, J. L., Redjemi, F., Guilbaud, G., and Besson, J. M. Analgesia induced by electrical stimulation of the inferior centralis nucleus of the raphe in the cat. Pain 1:139–145, 1975.

    PubMed  CAS  Google Scholar 

  • Oliveras, J. L., Hosobuchi, Y., Redjemi, F., Guilbaud, G., and Besson, J. M. Opiate antagonist, naloxone, strongly reduces analgesia induced by stimulation of a raphe nucleus (centralis inferior). Brain Res. 120:221–229, 1977.

    PubMed  CAS  Google Scholar 

  • Oliveras, J. L., Guilbaud, G., and Besson, J. M. A map of serotonergic structures involved in stimulation producing analgesia in unrestrained freely moving cats. Brain Res. 164:317–322, 1979.

    PubMed  CAS  Google Scholar 

  • Poitras, D., and Parent, A. Atlas of the distribution of monoamine-containing nerve cell bodies in the brain stem of the cat. J. Comp. Neurol. 179:699–718, 1978.

    PubMed  CAS  Google Scholar 

  • Pomeroy, S. L., and Behbehani, M. M. Physiological evidence for a projection from periaqueductal gray to nucleus raphe magnus in the rat. Brain Res. 176:143–147, 1979.

    PubMed  CAS  Google Scholar 

  • Price, D. D., Hayes, R. L., Ruda, M., and Dubner, R. Spatial and temporal transformations of input to spinothalamic tract neurons and their relation to somatic sensations. J. Neurophysiol. 41:933–947, 1978.

    PubMed  CAS  Google Scholar 

  • Prieto, G. J., Cannon, J. T., and Liebeskind, J. C. N. raphe magnus lesions disrupt stimulation-produced analgesia from ventral but not dorsal midbrain areas in the rat. Brain Res. 261:53–57, 1983.

    PubMed  CAS  Google Scholar 

  • Proudfit, H. K., and Anderson, E. G. Morphine analgesia: Blockade by raphe magnus lesions. Brain Res. 98:612–618, 1975.

    PubMed  CAS  Google Scholar 

  • Randic, M., and Yu, H. H. Effects of 5-hydroxytryptamine and bradykinin in cat dorsal horn neurones activated by noxious stimuli. Brain Res. 111:197–203, 1976.

    PubMed  CAS  Google Scholar 

  • Reddy, S. V. R., Maderdrut, J. L., and Yaksh, T. L. Spinal cord pharmacology of adrenergic agonist-mediated antinociception. J. Pharmacol. Exp. Ther. 213:525–533, 1980.

    PubMed  CAS  Google Scholar 

  • Rhodes, D. L., and Liebeskind, J. C. Analgesia from rostral brain stem stimulation in the rat. Brain Res. 143:521–532,1978.

    PubMed  CAS  Google Scholar 

  • Richardson, D. E., and Akil, H. Pain reduction by electrical brain stimulation in man. J. Neurosurg. 47:178–183, 1977.

    PubMed  CAS  Google Scholar 

  • Rivot, J. P., Chaouch, A., and Besson, J. M. The influence of naloxone on the C fiber response of dorsal horn neurons and their inhibitory control by raphe magnus stimulation. Brain Res. 176:355–364, 1979.

    PubMed  CAS  Google Scholar 

  • Rivot, J. P., Chaouch, A., and Besson, J. M. Nucleus raphe magnus modulation of response of rat dorsal horn neurons to unmyelinated fiber inputs: Partial involvement of serotonergic pathways. J. Neurophysiol. 44:1039–1057, 1980.

    PubMed  CAS  Google Scholar 

  • Rivot, J. P., Chiang, C. Y., and Besson, J. M. Increase of serotonin metabolism within the dorsal horn of the spinal cord during nucleus raphe magnus stimulation, as revealed by in vivo electrochemical detection. Brain Res. 238:117–126, 1982.

    PubMed  CAS  Google Scholar 

  • Sagen, J., and Proudfit, H. K. Hypoalgesia induced by blockade of noradrenergic projections to the raphe magnus: Reversal by blockade of noradrenergic projections to the spinal cord. Brain Res. 223:391–396, 1981.

    PubMed  CAS  Google Scholar 

  • Sagen, J., and Proudfit, H. K. Evidence for pain modulation by pre-and postsynaptic noradrenergic receptors in the medulla oblongata. Brain Res. 331:285–293, 1985.

    PubMed  CAS  Google Scholar 

  • Sagen, J., and Proudfit, H. K. Effect of intrathecally administered noradrenergic antagonists on nociception in the rat. Brain Res. 310:295–301, 1984.

    PubMed  CAS  Google Scholar 

  • Sagen, J., Winker, M. A., and Proudfit, H. K. Hypoalgesia induced by the local injection of phentolamine in the nucleus raphe mangus: Blockade by depletion of spinal cord monoamines. Pain 16:253–263, 1983.

    PubMed  CAS  Google Scholar 

  • Saper, C. B., Loewy, A. D., Swanson, L. W., and Cowan, W. M. Direct hypothalamo-autonomic connections. Brain Res. 117:305–312, 1976.

    PubMed  CAS  Google Scholar 

  • Sar, M., Stumpf, W. E., Miller, R. J., Chang, K.-J., and Cuatrecasas, P. Immunohistochemical localization of enkephalin in rat brain and spinal cord. J. Comp. Neurol. 182:17–38, 1978.

    PubMed  CAS  Google Scholar 

  • Satoh, M., Akaike, A., Nakazawa, T., and Takagi, H. Evidence for involvement of separate mechanisms in the production of analgesia by electrical stimulation of the nucleus reticularis paragigantocellularis and nucleus raphe magnus in the rat. Brain Res. 194:525–529, 1980.

    PubMed  CAS  Google Scholar 

  • Satoh, M., Oku, P., and Akaike, A. Analgesia produced by microinjection of l-glutamate into the rostral ventromedial bulbar nuclei of the rat and its inhibition by intrathecal alpha-adrenergic blocking agents. Brain Res. 261:361–364, 1983.

    PubMed  CAS  Google Scholar 

  • Sawchenko, P. E., and Swanson, L. W. Immunohistochemical identification of neurons in the paraventricular nucleus of the hypothalamus that project to the medulla or to the spinal cord in the rat. J. Comp. Neurol. 205:260–272, 1982.

    PubMed  CAS  Google Scholar 

  • Schmauss, C., Hammond, D. L., Ochi, J. W., and Yaksh, T. L. Pharmacological antagonism of the antinociceptive effects of serotonin in the rat spinal cord. Eur.J. Pharmacol. 90:349–357, 1983.

    PubMed  CAS  Google Scholar 

  • Schmidek, H. H., Fohanno, D., Ervin, F. R., and Sweet, W. H. Pain threshold alterations by brain stimulation in the monkey. J. Neurosurg. 35:715–722, 1971.

    PubMed  CAS  Google Scholar 

  • Schofield, S. P. M., and Everitt, B. J. The organization of indoleamine neurons in the brain of the rhesus monkey (Macaca mulatto). J. Comp. Neurol. 197:369–383, 1981.

    PubMed  CAS  Google Scholar 

  • Sessle, B. J., Hu, J. W., Dubner, R., and Lucier, G. E. Functional properties of neurons in cat trigeminal caudalis (medullary dorsal horn). II. Modulation of responses to noxious and nonnoxious stimuli by periaqueductal gray, nucleus raphe magnus, cerebral cortex and afferent influences, and effect of naloxone. J. Neurophysiol. 45:193–207, 1981.

    PubMed  CAS  Google Scholar 

  • Shah, Y., and Dostrovsky, J. O. Electrophysiological evidence for a projection of the periaqueductal gray matter to nucleus raphe magnus in cat and rat. Brain Res. 193:534–538, 1980.

    PubMed  CAS  Google Scholar 

  • Sherrington, C. S., and Sowton, S. C. M. Observations on reflex responses to single break shocks. J. Physiol. (Lond.) 49:331–348, 1915.

    CAS  Google Scholar 

  • Skagerberg, G., Bjorklund, A., Lindvall, O., and Schmidt, R. H. Origin and termination of the diencephalo—spinal dopamine system in the rat. Brain Res. Bull. 9:237–244, 1982.

    PubMed  CAS  Google Scholar 

  • Skirboll, L., Hökfelt, T., Dockray, G., Rehfeld, J., Brownstein, M., and Cuello, A. C. Evidence for periaqueductal cholecystokinin—substance P neurons projecting to the spinal cord. J. Neurosci. 3:1151–1157, 1983.

    PubMed  CAS  Google Scholar 

  • Soja, P. J., and Sinclair, J. G. Tonic descending influences on cat spinal cord dorsal horn neurons. Somatosens. Res. 1:83–93, 1983.

    PubMed  CAS  Google Scholar 

  • Soper, W. Y. Effects of analgesic midbrain stimulation on reflex withdrawal and thermal escape in the rat. J. Comp. Physiol. Psychol. 90:91–101, 1976.

    PubMed  CAS  Google Scholar 

  • Soper, W. Y., and Melzack, R. Stimulation-produced analgesia: Evidence for somatotopic organization in the midbrain. Brain Res. 251:301–311, 1982.

    PubMed  CAS  Google Scholar 

  • Steinbusch, H. W. M. Distribution of serotonin-immunoreactivity in the central nervous system of the rat—cell bodies and terminals. Neuroscience 6:557–618, 1981.

    PubMed  CAS  Google Scholar 

  • Swanson, L. W., and Kuypers, H. G. J. M. The paraventricular nucleus of the hypothalamus: Cytoarchitectonic subdivisions and organization of projections to the pituitary, dorsal vagal complex, and spinal cord as demonstrated by retrograde fluorescence double-labeling methods. J. Comp. Neurol. 194:555–570, 1980.

    PubMed  CAS  Google Scholar 

  • Takagi, H., Doi, T., and Akaike, A. Microinjection of morphine into the medial part of the bulbar reticular formation in rabbit and rat: Inhibitory effects on lamina V cells of spinal dorsal horn and behavioral analgesia, in: Opiates and Endogenous Opioid Peptides (H. W. Kosterlitz, ed.) Elsevier, Amsterdam, 1976, pp. 191–197.

    Google Scholar 

  • Tohyama, M., Sakai, K., Salvert, D., Touret, M., and Jouvet, M. Spinal projections from the lower brain stem in the cat as demonstrated by the horseradish peroxidase technique. I. Origins of the reticulospinal tracts and their funicular trajectories. Brain Res. 173:383–403, 1979a.

    PubMed  CAS  Google Scholar 

  • Tohyama, M., Sakai, K., Touret, M., Salvert, D., and Jouvet, M. Spinal projections from the lower brainstem in the cat as demonstrated by the horseradish peroxidase technique. II. Projections from the dorsolateral pontine tegmentum and raphe nuclei. Brain Res. 176:215–231, 1979b.

    PubMed  CAS  Google Scholar 

  • Tsubokawa, T., Yamamoto, T., Katayama, Y., and Moriyau, N. Clinical results and physiological basis of thalamic relay nucleus stimulation for relief of intractable pain with morphine tolerance. Appl. Neurophysiol. 45:143–155, 1982.

    PubMed  CAS  Google Scholar 

  • Uhl, G. R., Goodman, R. R. Kuhar, M. J., Childers, S. R., and Snyder, S. H. Immunohisto-chemical mapping of enkephalin containing cell bodies, fibers and nerve terminals in the brain stem of the rat. Brain Res. 166:75–94, 1979.

    PubMed  CAS  Google Scholar 

  • Urca, G., Nahin, R. L., and Liebeskind, J. C. Glutamate-induced analgesia: Blockade and potentiation by naloxone. Brain Res. 192:523–530, 1980.

    PubMed  CAS  Google Scholar 

  • Veazey, R. B., Amaral, D. G., and Cowan, W. M. The morphology and connections of the posterior hypothalamus in the cynomolgus monkey (Macaca fascicularis). II. Efferent connections. J. Comp. Neurol. 207:135–156, 1982.

    PubMed  CAS  Google Scholar 

  • Vincent, S. R., Hökfelt, T., Christensson, I., and Terenius, L. Dynorphin-immunoreactive neurons in the central nervous system of the rat. Neurosci. Lett. 33:185–190, 1982.

    PubMed  CAS  Google Scholar 

  • Wall, P. D. The laminar organization of dorsal horn and effects of descending impulses. J. Physiol. (Lond.) 188:403–423, 1967.

    CAS  Google Scholar 

  • Wamsley, J. K., Young, W. S. III, and Kuhar, M. J. Immunohistochemical localization of enkephalin in rat forebrain. Brain Res. 190:153–174, 1980.

    PubMed  CAS  Google Scholar 

  • Watkins, L. R., Griffin, G., Leichnetz, G. R., and Mayer, D. J. The somatotopic organization of the nucleus raphe magnus and surrounding brain stem structures as revealed by HRP slow-release gels. Brain Res. 181:1–15, 1980.

    PubMed  CAS  Google Scholar 

  • Watkins, L. R., Griffin, G., Leichnetz, G. R., and Mayer, D. J. Identification and somatotopic organization of nuclei projecting via the dorsolateral funiculus in rats: A retrograde tracing study using HRP slow-release gels. Brain Res. 223:237–255, 1981.

    PubMed  CAS  Google Scholar 

  • Watson, S. J., Khachaturian, H., Akil, H., Coy, D. H., and Goldstein, A. Comparison of the distribution of dynorphin systems and enkephalin systems in brain. Science 218:1134–1136, 1982.

    PubMed  CAS  Google Scholar 

  • Wessendorf, M. W., Proudfit, H. K, and Anderson, E. G. The identification of serotonergic neurons in the nucleus raphe magnus by conduction velocity. Brain Res. 214:168–173, 1981.

    PubMed  CAS  Google Scholar 

  • West, D. C., and Wolstencroff, J. H. Location and conduction velocity of raphe spinal neurones in nucleus raphe magnus and raphe pallidus in the cat. Neurosci. Lett. 5:147–151, 1977.

    PubMed  CAS  Google Scholar 

  • Westlund, K. N., Bowker, R. M., Ziegler, M. G., and Coulter, J. D. Descending noradrenergic projections and their spinal terminations. Prog. Brain Res. 57:219–238, 1982.

    PubMed  CAS  Google Scholar 

  • Wiesendanger, M. The pyramidal tract. Recent investigations on its morphology and function. Ergeb. Physiol. Biol. Chem. Exp. Pharmakol. 61:72–136, 1969.

    CAS  Google Scholar 

  • Wiklund, L., Leger, L., and Persson, M. Monoamine cell distribution in the cat brain stem. A fluorescence histochemical study with quantification of indolaminergic and locus coeruleus cell groups. J. Comp. Neurol. 203:613–647, 1981.

    PubMed  CAS  Google Scholar 

  • Williams, R. G., and Dockray, G. J. Distribution of enkephalin-related peptides in rat brain: Immunohistochemical studies using antisera to met-enkephalin and met-enkephalin Arg6Phe7. Neuroscience 9:563–586, 1983.

    PubMed  CAS  Google Scholar 

  • Willis, W. D. Control of nociceptive transmission in the spinal cord, in: Progress in Sensory Physiology, Vol. 3 (H. Autrum, D. Ottoson, E. R. Perl, and R. F. Schmidt, eds.), Springer-Verlag, New York, 1982, pp. 54–75.

    Google Scholar 

  • Willis, W. D., Haber, L. H., and Martin, R. F. Inhibition of spinothalamic tract cells and interneurons by brain stem stimulation in the monkey. J. Neurophysiol. 40:968–981, 1977.

    PubMed  CAS  Google Scholar 

  • Wise, S. P., and Jones, E. G. Cells of origin and terminal distribution of decending projections of the rat somatic sensory cortex. J. Comp. Neurol. 175:129–158, 1977.

    PubMed  CAS  Google Scholar 

  • Wise, S. P., Murray, E. A., and Coulter, J. D. Somatotopic organization of corticospinal and corticotrigeminal neurons in the rat. Neuroscience 4:65–78, 1979.

    PubMed  CAS  Google Scholar 

  • Yaksh, T. L. Direct evidence that spinal serotonin and noradrenaline terminals mediate the spinal antinociceptive effects of morphine in the periaqueductal gray. Brain Res. 160:180–185, 1979.

    PubMed  CAS  Google Scholar 

  • Yaksh, T. L., and Elde, R. E. Factors governing the release of methionine enkephalin-like immunoreactivity from the mesencephalon and spinal cord of the cat in vivo. J. Neurophysiol. 46:1056–1075, 1981.

    PubMed  CAS  Google Scholar 

  • Yaksh, T. L., and Hammond, D. L. Peripheral and central substrates involved in the rostrad transmission of nociceptive information. Pain 13:1–85, 1982.

    PubMed  CAS  Google Scholar 

  • Yaksh, T. L., and Rudy, T. A. Chronic catheterization of the spinal subarachnoid space. Physiol. Behav. 17:1031–1036, 1976.

    PubMed  CAS  Google Scholar 

  • Yaksh, T. L., and Rudy, T. A. Narcotic analgetics: CNS sites and mechanisms of action as revealed by intracerebral injection techniques. Pain 4:299–359, 1978.

    PubMed  CAS  Google Scholar 

  • Yaksh, T. L., and Tyce, G. M. Microinjection of morphine into the periaqueductal gray evokes the release of serotonin from spinal cord. Brain Res. 171:176–181, 1979.

    PubMed  CAS  Google Scholar 

  • Yaksh, T. L., and Tyce, G. M. Monoamine release from cat spinal cord by somatic stimuli: An intrinsic modulatory system. J. Physiol. (Lond.) 314:513–529, 1981.

    Google Scholar 

  • Yaksh, T. L., and Wilson, P. R. Spinal serotonin terminal system mediates antinociception. J. Pharmacol. Exp. Ther. 208:446–453,1979.

    PubMed  CAS  Google Scholar 

  • Yaksh, T. L., Duchateau, J. C., and Rudy, T. A. Antagonism by methysergide and cinanserin of the antinociceptive action of morphine administered into the periaqueductal gray. Brain Res. 104:367–372, 1976a.

    PubMed  CAS  Google Scholar 

  • Yaksh, T. L., Yeung, J. C., and Rudy, T. A. An inability to antagonize with naloxone the elevated thresholds resulting from electrical stimulation of the mesencephalic central gray. Life Sci. 18:1193–1198, 1976b.

    PubMed  CAS  Google Scholar 

  • Yaksh, T. L., Yeung, J. C., and Rudy, T. A. Systematic examination in the rat of brain sites sensitive to the direct application of morphine: Observation of differential effects within the periaqueductal gray. Brain Res. 114:83–103, 1976c.

    PubMed  CAS  Google Scholar 

  • Yaksh, T. L., Huang, S. P., and Rudy, T. A. The direct and specific opiate-like effect of met5 enkephalin and analogues on the spinal cord. Neuroscience 2:593–598, 1977.

    PubMed  CAS  Google Scholar 

  • Yezierski, R. P., Bowker, R. M., Kevetter, G. A., Westlund, K. N. Coulter, J. D., and Willis, W. D. Serotonergic projections to the caudal brainstem: A double label study using horse-radish peroxidase and serotonin immunoreactivity. Brain Res. 239:258–264, 1982a.

    PubMed  CAS  Google Scholar 

  • Yezierski, R. P., Wilcox, T. K., and Willis, W. D. The effects of serotonin antagonists on the inhibition of primate spinothalamic tract cells produced by stimulation in nucleus raphe magnus or periaqueductal gray. J. Pharmacol. Exp. Ther. 220:266–277, 1982b.

    PubMed  CAS  Google Scholar 

  • Yezierski, R. P., Gerhart, K. D., Schrock, B. J., and Willis, W. D. A further examination of effects of cortical stimulation on primate spinothalamic tract cells. J. Neurophysiol. 49:424–441, 1983.

    PubMed  CAS  Google Scholar 

  • Yunger, L. M., Harvey, J. A., and Lorens, S. A. Dissociation of the analgesic and rewarding effects of brain stimulation in the rat. Physiol. Behav. 10:909–913, 1973.

    PubMed  CAS  Google Scholar 

  • Zieglgansberger, W., and Tulloch, I. F. The effects of methionine-and leucine-enkephalin on spinal neurones of the cat. Brain Res. 167:53–64, 1979.

    PubMed  CAS  Google Scholar 

  • Zorman, G., Hentall, I. D., Adams, J. E., and Fields, H. L. Naloxone-reversible analgesia produced by microstimulation in the rat medulla. Brain Res. 219:137–148, 1981.

    PubMed  CAS  Google Scholar 

  • Zorman, G., Belcher, G., Adams, J. E., and Fields, H. L. Lumbar intrathecal naloxone blocks analgesia produced by microstimulation of the ventromedial medulla in the rat. Brain Res. 236:77–84, 1982.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hammond, D.L. (1986). Control Systems for Nociceptive Afferent Processing. In: Yaksh, T.L. (eds) Spinal Afferent Processing. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-4994-5_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-4994-5_15

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-4996-9

  • Online ISBN: 978-1-4684-4994-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics