Skip to main content

Fusion Partners for Production of Human Monoclonal Antibodies

  • Chapter
Human Hybridomas and Monoclonal Antibodies

Abstract

The technology for production of murine monoclonal antibodies has advanced enormously since its introduction by Köhler and Milstein (1975). However, the production of human monoclonal antibodies by fusion technologies has been hampered, mainly by the current scarcity of suitable human cell lines as fusion partners. Hypoxanthine-aminopterin-thymidine (HAT)-sensitive murine plasmacytomas have been fused with human lymphocytes to yield mouse-human hybrids that secrete human antibody against the Forssman antigen (Nowinski et al., 1980), keyhole limpet hemocyanin (KLH) (Lane et al., 1982), tetanus toxoid (Kozbor et al.,1982b; Butler et al., 1983), human tumor-associated antigen (Schlom et al.,1980; Sikora and Wright, 1981; Sikora and Phillips, 1981), and multiple endocrine organs (Satoh et al., 1983). These interspecies hybridomas preferentially segregate human chromosomes, making it difficult to derive stable lines secreting human antibody. However, the loss of human chromosomes from mouse-human hybridomas is not random. It is known, for example, that human chromosomes 14 (heavy chain) and 22 (λ light chain) are preferentially retained, whereas chromosome 2 (κ chain) is preferentially lost (Croce et al.,1979; Erikson et al., 1981).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abrams, P. G., Knost, J. A., Clarke, G., Wilburn, S., Oldham, R. K., and Foon, K. A., 1983, Determination of the optimal human cell lines for development of human hybridomas, J. Immunol. 131: 1201–1204.

    PubMed  CAS  Google Scholar 

  • Atlaw, T., Kozbor, D., and Roder, J. C., 1984, Human monoclonal antibodies against Mycobacterium leprae, Inf. Immun.

    Google Scholar 

  • Bengtsson, D. B., Nabholz, M., Kennett, R. H., and Bodmer, W. F., 1975, Human intraspecific somatic cell hybrids: A genetic and karyotypic analysis of crosses between lymphocytes and D98/AH-2, Somat. Cell Genet. 1: 41–64.

    Article  CAS  Google Scholar 

  • Ber, R., Klein, G., Moar, M., Povey, S., Rosén, A., Westman, A., Yefenof, E., and Zeuthen, J., 1978, Somatic cell hybrids between human lymphoma lines. IV. Establishment and characterization of a P3HR-1/Daudi hybrid, Int. J. Cancer 21: 707.

    Article  PubMed  CAS  Google Scholar 

  • Butler, Y. L., Lane, H. C., and Fauci, A. S., 1983, Delineation of optimal conditions for producing mouse—human heterohybridomas from human peripheral blood B cells of immunized subjects, J. Immunol. 130: 165–168.

    PubMed  CAS  Google Scholar 

  • Chiorazzi, N., Wasserman, R. J., and Kunkel, H. G., 1982, Use of Epstein—Barr virus-transformed B cell lines for the generation of immunoglobulin-producing human B cell hybridomas, J. Exp. Med. 156: 930–935.

    Article  PubMed  CAS  Google Scholar 

  • Croce, C. M., Shander, M., Martinis, J., Cicurel, L., D’Ancona, G. G., Dolby, T. W., and Koprowski, H., 1979, Chromosomal locations of the genes for human immunoglobulin heavy chains, Eur. J. Immunol. 10: 486–488.

    Article  Google Scholar 

  • Croce, C. M., Linnenbach, A., Hall, W., Steplewski, Z., and Koprowski, H., 1980, Production of human hybridomas secreting antibodies to measles virus, Nature 228: 488–489.

    Article  Google Scholar 

  • Diehl, V., Schaadt, M., Kirchner, H., Hellriegel, K. P., Gudat, F., Fonatsch, C., Lskewitz, E., and Guggenheim, R., 1978, Long-term cultivation of plasma cell leukemia cells and autologous lymphoblasts (LCL) in vitro: A comparative study, Blut 36: 331–338.

    Article  PubMed  CAS  Google Scholar 

  • Dwyer, D. S., Bradley, R. J., Urguhart, C. K., and Kearney, J. F., 1983, Naturally occurring antiidiotypic antibodies in myasthenia gravis patients, Nature 301: 611–614.

    Article  PubMed  CAS  Google Scholar 

  • Edwards, P. A., Smith, C. M., Neville, A. M., and O’Hare, M. J., 1982, A human-hybridoma system based on a fast-growing mutant of the ARH-77 plasma cell leukemia-derived line, Eur. J. Immunol. 12: 641–648.

    Article  PubMed  CAS  Google Scholar 

  • Eisenbarth, G. S., Linnenbach, A., Jackson, R., Scearce, R., and Croce, C. M., 1982, Human hybridomas secreting anti-islet autoantibodies, Nature 300: 264–267.

    Article  PubMed  CAS  Google Scholar 

  • Erikson, J., Martinis, J., and Croce, C. M., 1981, Assignment of the genes for human k immunoglobulin chains to chromosome 22, Nature 294: 173–175.

    Article  PubMed  CAS  Google Scholar 

  • Glassy, M. C., Handley, H. H., Hagiwara, H., and Royston, I., 1983, UC 729–6, a human lymphoblastoid B-cell line useful for generating antibody-secreting human—human hybridomas, Proc. Natl. Acad. Sci. USA 80: 6327–6331.

    Article  PubMed  CAS  Google Scholar 

  • Ishihara, N., Kiyofuzi, T., and Oboshi, S., 1977, Establishment and characterization of a human plasmacyte cell line derived from a patient with IgD multiple myeloma, in: Proceedings Japanese Cancer Association, Annual Meeting, 36: 120–126.

    Google Scholar 

  • Jobin, M. E., Fahey, J. L., and Price, Z., 1974, Long-term establishment of a human plasmacyte cell line derived from a patient with IgD multiple myeloma. I. Requirement of a plasmacytestimulating factor for the proliferation of myeloma cells in tissue culture, J. Exp. Med. 140: 494–507.

    CAS  Google Scholar 

  • Karpas, A., Fischer, P., and Swirsky, D., 1982, Human plasmacytoma with an unusual karyotype

    Google Scholar 

  • growing in vitro and producing light-chain immunoglobulin, Lancet 1:931–933.

    Google Scholar 

  • Kearney, J. F., Radbrusch, A., Liesegang, B., and Rajewski, K., 1979, A new mouse myeloma cell line that has lost immunoglobulin expression but permits the construction of antibodysecreting hybrid cell lines, J. Immunol. 1231: 1548–1550.

    Google Scholar 

  • Köhler, G., and Milstein, C., 1975, Continuous cultures of fused cells secreting antibody of predefined specificity, Nature 256: 495–497.

    Article  PubMed  Google Scholar 

  • Köhler, G., Howe, S. C., and Milstein, C., 1976, Fusion between immunoglobulin-secreting and non-secreting myeloma cell lines, Eur. J. Immunol. 6: 292–295.

    Article  PubMed  Google Scholar 

  • Kozbor, D., and Roder, J. C., 1981, Requirements for the establishment of high-titered human monoclonal antibodies against tetanus toxoid using the Epstein—Barr virus technique, J. Immunol. 127: 1275–1280.

    PubMed  CAS  Google Scholar 

  • Kozbor, D., and Roder, J. C., 1983, Monoclonal antibodies produced by human lymphocytes, Immunol. Today 4 (3): 72–79.

    CAS  Google Scholar 

  • Kozbor, D., and Roder, J. C., 1984, In vitro stimulated lymphocytes as a source of human hybridomas, Eur. J. Immunol. 14: 23–27.

    Article  PubMed  CAS  Google Scholar 

  • Kozbor, D., Lagarde, A. E., and Roder, J. C., 1982a, Human hybridomas constructed with antigen-specific Epstein—Barr virus-transformed cell lines, Proc. Natl. Acad. Sci. USA 79: 6651–6655.

    Article  PubMed  CAS  Google Scholar 

  • Kozbor, D., Roder, J. C., Chang, T. H., Steplewski, Z., and Koprowski, H., 1982b, Human anti-tetanus toxoid monoclonal antibody secreted by EBV-transformed human B cells fused with the murine myeloma, Hybridoma 1 (3): 323–328.

    Article  PubMed  CAS  Google Scholar 

  • Kozbor, D., Dexter, D., and Roder, J. C., 1983, A comparative analysis of the phenotypic characteristics of available fusion partners for the construction of human hybridomas, Hybridoma 2 (1): 7–16.

    Article  PubMed  CAS  Google Scholar 

  • Kozbor, D., Tripputi, P., Roder, J. C., and Croce, C. M., 1984, A human hybrid myeloma for production of human monoclonal antibody, J. Immunol., 133: 3001–3005.

    PubMed  CAS  Google Scholar 

  • Lane, H. C., Shelhamer, J. H., Motowski, H. S., and Fauci, A. S., 1982, Human monoclonal anti-keyhole limpet hemocyanin antibody-secreting hybridoma produced from peripheral blood B lymphocytes of a keyhole limpet hemocyanin-immune individual, J. Exp. Med. 155: 333–337.

    Article  PubMed  CAS  Google Scholar 

  • Larrick, J. W., Truitt, K. E., Raubitschek, A. A., Senyk, G., and Wang, J. C. N., 1983, Characterization of human hybridomas secreting antibody to tetanus toxoid, Proc. Natl. Acad. Sci. USA 80: 6376–6380.

    Article  PubMed  CAS  Google Scholar 

  • Matsuoka, Y., Moore, G. E., Yagi, Y., and Pressman, D., 1967, Production of free light chains of immunoglobulin by a hematopoietic cell line derived from a patient with multiple myeloma, Proc. Soc. Exp. Biol. 125: 1246–1250.

    PubMed  CAS  Google Scholar 

  • Nilsson, K., 1978, Established human lymphoid cell lines as model for B-lymphocyte differentiation, in: Human Lymphocyte Differentiation: Its Application to Cancer ( B. Serrou and C. Rosenfeld, eds.), Elsevier/North-Holland, Amsterdam, pp. 307–317.

    Google Scholar 

  • Nilsson, K., and Pontén, J., 1975, Classification and biological nature of established human hematopoietic cell lines, Int. J. Cancer 15: 321–341.

    Article  PubMed  CAS  Google Scholar 

  • Nilsson, K., Bennich, H., Johansson, S. G. O., and Pontén, J., 1970, Established immunoglobulin producing myeloma (IgE) and lymphoblastoid (IgG) cell lines from an IgE myeloma patient, Clin. Exp. Immunol. 7: 477–489.

    CAS  Google Scholar 

  • Nowinski, R., Berglund, C., Lane, Y., Lostrom, M., Bernstein, I., Young, W., Hakomori, S., Hill, L., and Cooney, M., 1980, Human monoclonal antibody against Forssman antigen, Science 210: 537–539.

    Article  PubMed  CAS  Google Scholar 

  • Olsson, L., and Kaplan, H. S., 1980, Human—human hybridomas producing monoclonal antibodies of predefined antigenic specificity, Proc. Natl. Acad. Sci. USA 77: 5429–5431.

    Article  PubMed  CAS  Google Scholar 

  • Olsson, L., Kronstrom, H., Cambon-De Mouzom, A., Honsik, C., Brodin, T., and Jakobsen, B., 1983, Antibody-producing human—human hybridoma. I. Technical aspects, J. Immunol. Meth. 61: 17–32.

    CAS  Google Scholar 

  • Olsson, L., Andreasen, R. B., Ost, A., Christensen, B., and Biberfeld, P., 1984, Antibody-producing human—human hybridomas. II. Derivation and characterization of an antibody specific for human leukemia cells, J. Exp. Med. 159: 537–550.

    Article  PubMed  CAS  Google Scholar 

  • Osband, M., Cavagnaw, J., and Kupchick, H. Z., 1981, Biochemical analysis of specific histamine HI and H2 receptors on lymphocytes, Blood 60 (5, Suppl. 1): 81a (abstract).

    Google Scholar 

  • Phillips, J., Sikora, K., and Watson, J. V., 1982, Localization of glioma by human monoclonal antibody, Lancet 2: 1214–1215.

    Article  PubMed  CAS  Google Scholar 

  • Pickering, J. W., and Gelder, F. B., 1982, A human myeloma cell line that does not express immunoglobulin but yields a high frequency of antibody-secreting hybridomas, J. Immunol. 129: 406–412.

    PubMed  CAS  Google Scholar 

  • Ritts, R. E., Jr., Ruiz-Arguelles, A., Weyl, K. G., Bradley, A. L., Weihmeir, B., Jacobsen, D. Y., and Strehlo, B. L., 1983, Establishment and characterization of a human non-secretory

    Google Scholar 

  • plasmoid cell line and its hybridization with human B cells, Int. J. Cancer 31: 133–141.

    Google Scholar 

  • Satoh, J., Prabhakar, B. S., Haspel, M. V., Ginsberg-Fellner, F., and Notkins, A. L., 1983, Human monoclonal auto-antibodies that react with multiple endocrine organs, N. Engl. J. Med. 309: 217–220.

    Article  PubMed  CAS  Google Scholar 

  • Schlom, T., Wunderlich, D., and Teramoto, Y. A., 1980, Generation of human monoclonal antibodies reactive with human mammary carcinoma cells, Proc. Natl. Acad. Sci. USA 77: 6841–6845.

    Article  PubMed  CAS  Google Scholar 

  • Shibuya, T., Niho, Y., Yamasaki, K., Nakayama, K., Oka, Y., Arase, K., and Yanase, T., 1980, Establishment of a lambda immunoglobulin producing myeloma cell line, Acta Haem. Jpn. 43: 256 (In Japanese).

    Google Scholar 

  • Shoenfeld, Y., Hsu-Lin, S. C., Gabriels, J. E., Silberstein, L, E., Furie, B. C., Furie, B., Stollar, B. D., and Schwartz, R. S., 1982, Production of auto-antibodies by human—human hybridomas, J. Clin. Invest. 70: 205–208.

    CAS  Google Scholar 

  • Shoenfeld, Y., Rauch, J., Massicotte, H., Datta, S. K., Andre-Schwartz, J., Stollar, B. D., and Schwartz, R. S., 1983, Polyspecificity of monoclonal lupus auto-antibodies produced by human—human hybridomas, N. Engl. J. Med. 308: 414–420.

    Article  PubMed  CAS  Google Scholar 

  • Sikora, K., and Phillips, J., 1981, Human monoclonal antibodies to glioma cells, Br. J. Cancer 43: 105–107.

    Article  PubMed  CAS  Google Scholar 

  • Sikora, K., and Wright, R., 1981, Human monoclonal antibodies to lung-cancer antigens, Br. J. Cancer 43: 696–700.

    Article  PubMed  CAS  Google Scholar 

  • Sikora, K., Alderson, T., Phillips, J., and Watson, J. V., 1982, Human hybridomas from malignant gliomas, Lancet 1: 11–14.

    Article  PubMed  CAS  Google Scholar 

  • Stähli, Ch., Staehelin, T., Miggiano, V., Schmidt, J., and Häring, P., 1980, High frequencies of antigen-specific hybridomas: Dependence on immunization parameters and prediction by spleen cell analysis, J. Immunol. Meth. 32: 297–304.

    Article  Google Scholar 

  • Standbridge, E. J., Der, C. J., Roenson, C. J., Nishimi, R. Y., Peehl, D. M., Weissman, B. E., and Wilkinson, J. E., 1982, Human cell hybrids: Analysis of transformation and tumorigenicity, Science 215: 252–259.

    Article  Google Scholar 

  • Strike, L., Devens, B. H., and Lundak, R. L., 1982, Production of human hybridomas secreting specific immunoglobulin following in vitro immunization, Immunology 163 (2–4): 272 (abstract).

    Google Scholar 

  • Teng, N. N. H., Lam, K. S., Riera, F. C., and Kaplan, H., 1983, Construction and testing of mouse—human heteromyelomas for human monoclonal antibody production, Proc. Natl. Acad. Sci. USA 80: 7308–7312.

    Article  PubMed  CAS  Google Scholar 

  • Togawa, A., Inoue, N., Miyamoto, K., Hyodo, H., and Namba, M., 1982, Establishment and characterization of a human myeloma cell line (KMM-1), Int. J. Cancer 29: 495–500.

    Article  PubMed  CAS  Google Scholar 

  • Warenius, H. M., Taylor, J. W., Durack, B. E., and Cross, P. A., 1983, The production of human hybridomas from patients with malignant melanoma. The effect of pre-stimulation of lymphocytes with pokeweed mitogen, Eur. J. Cancer Clin. Oncol. 19: 347–355.

    Article  PubMed  CAS  Google Scholar 

  • Zeijlemaker, W. P., Astaldi, G. C. B., Janssen, M. C., Stricker, E. A. M., and Tiebout, R. F., 1982, Production of human monoclonal antibodies, in: Proceedings 15th International Leucocyte Culture Conference, Asilomar, pp. 368–369.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Plenum Press, New York

About this chapter

Cite this chapter

Kozbor, D., Croce, C.M. (1985). Fusion Partners for Production of Human Monoclonal Antibodies. In: Engleman, E.G., Foung, S.K.H., Larrick, J.W., Raubitschek, A.A. (eds) Human Hybridomas and Monoclonal Antibodies. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-4949-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-4949-5_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-4951-8

  • Online ISBN: 978-1-4684-4949-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics