Skip to main content

Abstract

Since the advent of hybridoma technology, one of the most provocative applications for monoclonal antibodies has been immunotherapy. Early reports of experiments performed in mice suggested that monoclonal antibody therapy was beneficial against murine T-cell lymphoma (Bernstein et al., 1980) and that it might be useful to deliver potent toxins to undesirable cells in vivo [reviewed in Moller (1982)]. Murine monoclonals have more recently been administered without major adverse reactions to immunocompromised human patients with leukemia or lymphoma (Levy and Miller, 1983). Results from these studies have shown, however, that the therapeutic effects of these reagents were difficult to maintain, due in large part to a host response to mouse immunoglobulin (Ig) which resulted in accelerated clearance of successive doses (Levy and Miller, 1983). This observation together with the goal of prophylactically and therapeutically treating a broader group of human patients have provided incentive to develop human monoclonal technology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andriole, V. T., 1978, Pseudomonas bacteremia: Can antibiotic therapy improve survival, J. Lab. Clin. Med. 94: 196–200.

    Google Scholar 

  • Batteiger, B., Newhall, W.J., and Jones, R. B., 1982, The use of Tween 20 as a blocking agent in the immunological detection of proteins transferred to nitrocellulose membranes, J. Immunol. Meth. 55: 297–307.

    Article  CAS  Google Scholar 

  • Bernstein, I. D., Tam, M. R., and Nowinski, R. C., 1980, Mouse leukemia: Therapy with monoclonal antibodies against a thymus differentiation antigen, Science 207: 68–71.

    Article  PubMed  CAS  Google Scholar 

  • Bjornson, A. B., and Michael, J. G., 1974, Factors in human serum promoting phagocytosis of Pseudomonas aeruginosa. I. Interaction of opsonins with the bacterium, J. Infect. Dis. 130(Suppl):S 119–S 125.

    Article  Google Scholar 

  • Boyum, A., 1968, Isolation of mononuclear cells and granulocytes from human blood, Scand. J. Clin. Lab. Invest. 21 (Suppl. 97): 77–89.

    CAS  Google Scholar 

  • Brokopp, C. D., and Farmer, J. J., III, 1979, Typing methods for Pseudomonas aeruginosa, in: Pseudomonas aeruginosa: Clinical Manifestations of Infection and Current Therapy ( R. G. Doggett, ed.), Academic Press, New York, Chapter 5.

    Google Scholar 

  • Brown, N. A., and Miller, G., 1982, Immunoglobulin expression by human B lymphocytes clonally transformed by Epstein—Barr virus, J. Immunol. 128: 24–29.

    PubMed  CAS  Google Scholar 

  • Engvall, E., 1977, Quantitative enzyme immunoassay (ELISA) in microbiology, Med. Biol. 55: 193–200.

    PubMed  CAS  Google Scholar 

  • Ernberg, I., and Klein G., 1979, EB virus-induced antigens, in: The Epstein-Barr Virus ( M. A. Epstein and B. G. Achong, eds.), Springer, New York, Chapter 3.

    Google Scholar 

  • Fisher, M. W., Devlin, H. B., and Gnabasik, F. J., 1969, New immunotype scheme for Pseudomonas aeruginosa based on protective antigens, J. Bacteriol. 98: 835–836.

    PubMed  CAS  Google Scholar 

  • Goldman, R. C., and Leive, L., 1980, Heterogeneity of antigenic-side-chain length in lipopolysaccharide from Escherichia coli 0111 and Salmonella typhimurium LT2, Eur. J. Biochem. 107: 145–153.

    Article  PubMed  CAS  Google Scholar 

  • Hancock, R. E. W., and Carey, A. M., 1979, Outer membrane of Pseudomonas aeruginosa: Heat and 2-mercaptoethanol-modifiable proteins, J. Bacteriol. 140: 902–910.

    PubMed  CAS  Google Scholar 

  • Hanessian, S., Regan, W., Watson, D., and Haskell, T. H., 1971, Isolation and characterization of antigenic components of a new heptavalent Pseudomonas vaccine, Nature New Biol. 229: 209–210.

    PubMed  CAS  Google Scholar 

  • Hoffman, G. J., Lazarowitz, S. G., and Hayward, S. D., 1980, Monoclonal antibody against a 250,000-dalton glycoprotein of Epstein—Barr virus identifies a membrane antigen and a neutralizing antigen, Proc. Natl. Acad. Sci. USA 77: 2979–2983.

    Article  PubMed  CAS  Google Scholar 

  • Kennett, R. H., 1979, Cell fusion, Meth. Enzymol. 58: 345–359.

    Article  PubMed  CAS  Google Scholar 

  • Koskimies, S., 1980, Human lymphoblastoid cell line producing specific antibody against Rh antigen D, Scand. J. Immunol. 11: 73–77.

    Article  PubMed  CAS  Google Scholar 

  • Kozbor, D., and Roder, J. C., 1983, The production of monoclonal antibodies from human lymphocytes, Immunol. Today 4: 72–79.

    Article  CAS  Google Scholar 

  • Laemmli, U. K., 1970, Cleavage of structural protein during the assembly of the head of bacteriophage T4, Nature 227: 680–685.

    Article  PubMed  CAS  Google Scholar 

  • Larrick, J. W., and Buck, D. W., 1984, Practical aspects of human monoclonal antibody production, Bio Techniques 2: 6–14.

    CAS  Google Scholar 

  • Levy, R., and Miller, R. A., 1983, Tumor therapy with monoclonal antibodies, Fed. Proc. 42: 2650–2656.

    PubMed  CAS  Google Scholar 

  • Littlefield, J. W., 1964, Selection of hybrids from matings of fibroblasts in vitro and their presumed recombinants, Science 145: 709–710.

    Article  PubMed  CAS  Google Scholar 

  • Madsen, M., and Johnson, H. E., 1979, A methodological study of E-rosette formation using AET treated sheep red blood cells, J. Immunol. Meth. 27: 61–74.

    Article  CAS  Google Scholar 

  • Martinez-Maza, O., and Britton, S., 1983, Frequencies of the separate human B cell subsets activatable to Ig secretion by Epstein—Barr virus and pokeweed mitogen, J. Exp. Med. 157: 1808–1814.

    Article  PubMed  CAS  Google Scholar 

  • Miller, G., and Lipman, M., 1973, Comparison of the yield of infectious virus from clones of human and simian lymphoblastoid lines transformed by Epstein—Barr virus, J. Exp. Med. 138: 1398–1412.

    Article  PubMed  CAS  Google Scholar 

  • Moller, G. (ed.), 1982, Antibody Carriers of Drugs and Toxins in Tumor Therapy, Immunological Reviews, Volume 62, Munksgaard, Copenhagen.

    Google Scholar 

  • Nilsson, K., and Klein, G., 1982, Phenotypic and cytogenetic characteristics of human B-lymphoid cell lines and their relevance for the etiology of Burkitt’s lymphoma, Adv. Cancer Res. 37: 319–380.

    Article  PubMed  CAS  Google Scholar 

  • Pavla, E. T., and Makela, P. H., 1980, Lipopolysaccharide heterogeneity in Salmonella typhimurium analyzed by sodium dodecyl sulfate/polyacrylamide gel electrophoresis, Eur. J. Biochem. 107: 137–143.

    Article  Google Scholar 

  • Pollack, M., 1979, Antibody-mediated immunity in Pseudomonas disease and its clinical application, in: Immunoglobulins: Characteristics and Uses of Intravenous Preparations ( B. M. Alving and J. S. Finlayson, eds.), U.S. Department of Health and Human Services, Washington, D.C., pp. 73–79.

    Google Scholar 

  • Siadak, A. W., and Nowinski, R. C., 1981, Thy-2: A murine thymocyte-brain alloantigen controlled by a gene linked to the major histocompatibility complex, Immunogenetics 12: 45–58.

    Article  PubMed  CAS  Google Scholar 

  • Stein, L. D., and Sigal, N. H., 1983, Limiting dilution analysis of Epstein—Barr virus-induced immunoglobulin production, Cell. Immunol. 79: 309–319.

    Article  PubMed  CAS  Google Scholar 

  • Stein, L. D., Ledgley, C. J., and Sigal, N. H., 1983, Patterns of isotype commitment in human B cells: Limiting dilution analysis of Epstein—Barr virus-infected cells, J. Immunol. 130: 1640–1645.

    PubMed  CAS  Google Scholar 

  • Steinitz, M., Klein, G., Koskimies, S., and Makel, O., 1977, EB virus-induced B lymphocyte cell lines producing specific antibody, Nature 269: 420–422.

    Article  PubMed  CAS  Google Scholar 

  • Tam, M. R., Buchanan, T. M., Sandstrom, E. G., Holmes, K. K., Knapp, J. S., Siadak, A. W., and Nowinski, R. C., 1982, Serological classification of Neisseria gonorrhoeae with monoclonal antibodies, Infect. Immunol. 36: 1042–1053.

    CAS  Google Scholar 

  • Towbin, H., Staehelin, T., and Gordon, J., 1979, Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: Procedure and some applications, Proc. Natl. Acad. Sci. USA 76: 4350–4354.

    Article  PubMed  CAS  Google Scholar 

  • Van Furth, R., and van Zwet, T. L., 1973, In vitro determination of phagocytosis and intracellular killing by polymorphonuclear and mononuclear phagocytes, in: Handbook of Experimental Immunology, Volume 2, 2nd ed. ( D. M. Weir, ed.), Blackwell, Oxford, Chapter 36.

    Google Scholar 

  • Westphal, O., Luderitz, O., and Bister, F., 1952, Ãœber die Extraktion von Bakterien mit Phenol/Wasser, Z. Naturforsch. 79: 148–155.

    Google Scholar 

  • Westphal, O., Jann, K., and Himmelspach, K., 1983, Chemistry and immunochemistry of bacte- rial lipopolysaccharides as cell wall antigens and endotoxins, Progr. Allergy 33: 9–39.

    CAS  Google Scholar 

  • Winger, L., Winger, C., Shastry, P., Russell, A., and Longenecker, M., 1983, Efficient generation in vitro, from human peripheral blood cells, of monoclonal Epstein—Barr virus transformants producing specificity antibody to a variety of antigens without prior deliberate immunization, Proc. Natl. Acad. Sci. USA 80: 4484–4488.

    Article  PubMed  CAS  Google Scholar 

  • Yarchoan, R., Tosato, G., Blaese, R. M., Simon, R. M., and Nelson, D. L., 1983, Limiting dilution analysis of Epstein-Barr virus-induced immunoglobulin production by human B cells, J. Exp. Med. 157: 1–14.

    Article  PubMed  CAS  Google Scholar 

  • Young, L. S., 1974, Role of antibody in infections due to Pseudomonas aeruginosa, J. Infect. Dis. 130 (Suppl.): S111 - S118.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Plenum Press, New York

About this chapter

Cite this chapter

Siadak, A.W., Lostrom, M.E. (1985). Cell-Driven Viral Transformation. In: Engleman, E.G., Foung, S.K.H., Larrick, J.W., Raubitschek, A.A. (eds) Human Hybridomas and Monoclonal Antibodies. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-4949-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-4949-5_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-4951-8

  • Online ISBN: 978-1-4684-4949-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics