Skip to main content

The Thermal Conductivity and Expansion Enhancement Associated with Formation of the Superionic State in SrCl2

  • Chapter
  • 982 Accesses

Abstract

A second-order phase transition in SrCl2 near 1000 K produces superionic conduction and is often called the Bredig transition. This anion disordering occurs in other technologically important materials, such as U02, but at very high temperatures where measurements are difficult. Property studies on SrC12 at low temperatures may aid future high temperature studies.

Research sponsored by the Division of Materials Science, U.S. Department of Energy, under contract DE-AC05-840R21400 with the Martin Marietta Energy Systems, Inc.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. S. Dworkin and M. A. Bredig, J. Chem. Eng. Data 67, 697–8, (1963).

    CAS  Google Scholar 

  2. W. Schröter and J. Nolting, “Specific Heats of Crystals with the Fluorite Structure,” Journal de Physique C6 41(7), 66 (1980).

    Google Scholar 

  3. A. V. Chadwick, F. G. Kirkwood, and R. Saghafian, “Point Defect Parameters for Strontium Chloride from Ionic Conductivity Studies,” Journal de Physique C6, supplement to Vol. 41, page C6–216 (1980).

    Google Scholar 

  4. J. P. Moore, F. J. Weaver and D. L. McElroy, “The Thermal Conductivities of SrC12 and SrF2 from 85 to 400 K,” in Proceedings of the 18th Thermal Conductivity Conference, T. Ashworth, ed., Plenum Press, New York (in press).

    Google Scholar 

  5. T. G. Kollie, D. L. McElroy, J. T. Hutton and W. M. Ewing, “A Computer Operated Fused Quartz Differential Dilatometer,” p. 129–146 in Thermal Expansion — 1973, AIP Conference Proceedings 17, R. E. Taylor and G. L. Denman, American Institute of Physics, New York (1974).

    Google Scholar 

  6. T. G. Kollie, “Measurement of the Thermal Expansion Coefficient of Nickel from 300 to 1000 K and Determination of the Power-Law Constants Near the Curie Temperature,” Phys. Rev. B 16 (11), 4872–4881 (1977).

    Article  CAS  Google Scholar 

  7. M. Shand, R. C. Hanson, C. E. Derrington, and M. O’Keefe, Solid State Communications 18, 769–772 (1976).

    Article  CAS  Google Scholar 

  8. W. Schroter, “Anomale Spezifische Wärmen vom Kristallen Mit Fluoritstruktur,” PhD Dissertation, Gottingen (1979).

    Google Scholar 

  9. T. G. Godfrey, W. Fulkerson, T. G. Kollie, J. P. Moore and D. L. McElroy, “Thermal Conductivity of Uranium Dioxide from -57° to 1100°C by a Radial Heat Flow Technique,” J. Amer. Ceram. Soc. 48 (6), 297–305 (1965).

    Article  CAS  Google Scholar 

  10. W. Fulkerson, J. P. Moore, and D. L. McElroy, “Comparison of the Thermal Conductivity, Electrical Resistivity and Seebeck Coefficient of a High-Purity Iron and an Armco Iron to 1000°C,” J. Appl. Phys. 37 (7), 2639–53 (1966).

    Article  CAS  Google Scholar 

  11. W. Fulkerson, J. P. Moore, R. K. Williams, R. S. Graves and D. L. McElroy, “Thermal Conductivity, Electrical Resistivity, and Seebeck Coefficient of Silicon from 100°C to 1300°K,” Phys. Rev. 167 (3), 765–82 (1968).

    Article  CAS  Google Scholar 

  12. Private Communication from J. B. Bates, Oak Ridge National Laboratory, October 1982.

    Google Scholar 

  13. A. Eucken, Forsch. Gebiete Ingenieur. B3, Forschngshaft 353 (1932); Ceram. Abs. 11(11), 576 (1932); Ceram. Abs. 12 (6), 231 (1933).

    Google Scholar 

  14. R. W. Powell, C. Y. Ho, and P. E. Liley, “Thermal Conductivity of Selected Materials,” NSRDS-NBS 8, (1966).

    Google Scholar 

  15. R. K. Williams, “Enhanced Thermal Conduction Associated with Formation of the Superionic State,” Phys. Rev. B 26 (10), 5983–5986 (1982).

    Article  CAS  Google Scholar 

  16. J. K. Fink, M. G. Chasanov, and L. Leibowitz, “Thermophysical Properties of Uranium Dioxide,” J. of Nucl. Materials, 102, 17–25 (1981).

    Article  CAS  Google Scholar 

  17. “Matpro — Version II,” A handbook of materials properties for use in the analysis of light water reactor fuel rod behavior, compiled and edited by Donald L. Hagrman and Gregory A. Rexmann, NUREG/CR-0497, (1979).

    Google Scholar 

  18. Private communication from Roy Taylor, U.M.I.S.T., Manchester England, July 25, 1983.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Purdue Research Foundation

About this chapter

Cite this chapter

Moore, J.P., Weaver, F.J., Graves, R.S., McElroy, D.L. (1985). The Thermal Conductivity and Expansion Enhancement Associated with Formation of the Superionic State in SrCl2 . In: Ashworth, T., Smith, D.R. (eds) Thermal Conductivity 18. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-4916-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-4916-7_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-4918-1

  • Online ISBN: 978-1-4684-4916-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics