The Effect of Blood O2 Affinity on the Efficiency of O2 Transport in Blood at Hypoxic Hypoxia

  • Z. Turek
  • F. Kreuzer
  • P. Scotto
  • K. Rakusan
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 180)


During delivery of O2 to the tissue, O2 partial pressure and content decrease, these two being related by the blood O2 dissociation curve (ODC) with O2 content rather than saturation plotted against PO2. When dealing with the O2 transport in the whole body, the PO2 decrement during transport in blood equals the difference between PO2 of the blood leaving the lung capillaries and that of the mixed-venous blood entering the lung. At hypoxic hypoxia this PO2 decrement becomes less than at normoxia, even though the total flux (O2 consumption) usually remains the same. A decrease of the pressure difference at unchanged O2 flux suggests that at hypoxia hypoxia the resistance to the O2 transport in blood must decrease, i.e., the O2 conductance must increase.


Cardiac Output Dissociation Curve Oxygen Affinity Mild Hypoxia Capacitance Coefficient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adair, C. S., 1925, The hemoglobin system. VI. The oxygen dissociation curve of hemoglobin, J. Biol. Chem., 63:529–545.Google Scholar
  2. Banchero, N., Grover, R. F., and Will, J. A., 1971, Oxygen transport in the llama (Lama glama), Respir. Physiol., 13:102–115.PubMedCrossRefGoogle Scholar
  3. Bartels, H., 1972, The biological significance of the Bohr effect, in: “Oxygen Affinity of Hemoglobin and Red Cell Acid Base Status”, M. Rørth, and P. Astrup, eds., Munksgaard, Copenhagen, p. 717–735.Google Scholar
  4. Bartels, H., and Harms, H., 1959, Sauerstoffdissoziationskurven des Blutes von Säugetieren, Pflügers Arch., 268:334–365.PubMedCrossRefGoogle Scholar
  5. Baumann, R., Bauer, Ch., and Bartels, H., 1971, Influence of chronic and acute hypoxia on oxygen affinity and red cell 2,3 diphosphoglycerate of rats and guinea pigs, Respir. Physiol., 11:135–144.PubMedCrossRefGoogle Scholar
  6. Duvelleroy, M. A., Mehmel, H., and Laver, M. B., 1973, Hemoglobin-oxygen equilibrium and coronary blood flow: an analog model, J. Appl. Physiol., 35:480–484.PubMedGoogle Scholar
  7. Kreuzer, F., and Turek, Z., 1981, Auswirkungen einer Verschiebung der Sauerstoffdissoziationskurve in verschiedenen Höhenlagen, in: “Medizinische Aspekte der Höhe. Alpine Höhenlage als Training und Therapie”, Int. Symposium, Innsbruck, March 1980, Georg Thieme Verlag, Stuttgart-New York, p. 15–23.Google Scholar
  8. Monge, C., and Whittembury, J., 1976, High altitude adaptations in the whole animal, in: “Environmental Physiology of Animals”, J. Bligh, J. L. Cloudsley-Thompson, and A. G. Macdonald, eds., Blackwell Scientific Publications, Oxford, p. 289–308.Google Scholar
  9. Piiper, J., Dejours, P., Haab, P., and Rahn, H., 1971, Concepts and basic quantities in gas exchange physiology, Respir. Physiol., 13:292–304.PubMedCrossRefGoogle Scholar
  10. Piiper, J., and Scheid, P., 1980, Blood-gas equilibration in lungs, in: “Pulmonary Gas Exchange”, J. B. West, ed., Academic Press, New York-London-Toronto-Sydney-San Francisco, p. 131–171.Google Scholar
  11. Richardson, T. Q., and Guyton, C. A., 1959, Effects of polycythemia and anemia on cardiac output and other circulatory factors, Am. J. Physiol., 197:1167–1170.Google Scholar
  12. Roughton, F. J. W., and Severinghaus, J. W., 1973, Accurate determination of O2 dissociation curve of human blood above 98.7% saturation with data on O2 solubility in unmodified human blood from 0° to 37° C., J. Appl. Physiol., 35:861–863.PubMedGoogle Scholar
  13. Smith, E. E., and Crowell, J. W., 1963, Influence of hematocrit ratio on survival of unacclimatized dogs at simulated high altitude, Am. J. Physiol., 205:1172–1174.PubMedGoogle Scholar
  14. Smith, E. E., and Crowell, J. W., 1967, Role of an increased hematocrit in altitude acclimatization, Aerospace Med., 38:39–43.Google Scholar
  15. Sold, M. J., 1982, Is there an optimal P50 of haemoglobin? Consideration about the significance of a left- or right-shift of the oxyhaemoglobin dissociation curve, Anaesthesia, 37:640–645.PubMedCrossRefGoogle Scholar
  16. Tien, Y. -K., 1979, The optimal position of oxyhemoglobin dissociation curve, Anesthesiology, 51:S375.CrossRefGoogle Scholar
  17. Turek, Z., Kreuzer, F., and Hoofd, L. J. C., 1973, Advantage or disadvantage of a decrease of blood oxygen affinity for tissue oxygen supply at hypoxia, Pflügers Arch., 342:185–197.PubMedCrossRefGoogle Scholar
  18. Turek, Z., and Kreuzer, F., 1976, Effect of a shift of the oxygen dissociation curve on myocardial oxygenation at hypoxia, in: “Oxygen Transport to Tissue — II”, J. Grote, D. Reneau, and G. Thews, eds., Plenum Publishing Corporation, New York, p. 657–662.Google Scholar
  19. Turek, Z., Kreuzer, F., Scotto, P., and Rakusan, K., 1980, Blood O2 dissociation curve and O2 transport at hypoxic hypoxia, Physiologist, 23:25, no, 131.Google Scholar
  20. Willford, D. C., Hill, E. P., and Moores, W. Y., 1982, Theoretical analysis of optimal P50, J. Appl. Physiol. Respirat. Environ. Exercise Physiol., 52:1043–1048.Google Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Z. Turek
    • 1
  • F. Kreuzer
    • 1
  • P. Scotto
    • 2
  • K. Rakusan
    • 3
  1. 1.Department of Physiology, Faculty of MedicineUniversity of NijmegenNijmegenThe Netherlands
  2. 2.Institute of Human Physiology, First Faculty of Medicine and SurgeryUniversity of NaplesNaplesItaly
  3. 3.Department of Physiology, Faculty of MedicineUniversity of OttawaOttawaCanada

Personalised recommendations