Skip to main content

Mechanisms of Brain Survival in Anoxia: Mitochondrial Activity and Ion Homeostasis in Turtle and Rat

  • Chapter
Oxygen Transport to Tissue—VI

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 180))

Abstract

When mammalian brain is deprived of oxygen, degenerative changes occur so rapidly that within a few minutes, recovery becomes questionable. This vulnerability is a general characteristic of vertebrates and is likely a function of the high energy demand of brain tissues. During anoxia, brain electrical activity ceases within seconds, transmembrane ion homeostasis is lost soon thereafter and energy reserves are depleted within a few minutes. The ultimate causes of functional loss and tissue damage are difficult to investigate because of the rapidity of these events and most investigations have been confined to detailing the pathways of aerobic and anaerobic glycolysis and the changes in substrates and intermediates that occur during hypoxia or anoxia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Astrup, J., Symon, L., Branston, N.M. and Lassen, N.A., 1977, Cortical evoked potential and extracellular K+ and H+ at critical levels of brain ischemia, Stroke, 8:51–57.

    Article  PubMed  CAS  Google Scholar 

  • Bashford, C.L., Barlow, C.H., Chance, B., Haselgrove, H. and Sorge, J., 1982 Optical measurements of oxygen delivery and consumption in gerbil cerebral cortex, Amer J Physiol., 242:C265–271.

    PubMed  CAS  Google Scholar 

  • Belkin, D.A., 1968, Anaerobic brain function: Effects of stagnant and anoxic anoxia on persistence of breathing in reptile, Science, 162:1017–1018.

    Article  PubMed  CAS  Google Scholar 

  • Bennett, A.F. and Dawson, W.R., 1976, Metabolism, In: “Biology of the Reptilia,” C. Gaus and W.R. Dawson, eds., Academic Press, N.Y.

    Google Scholar 

  • Bentley, T.B., Lutz, P.L., Rosenthal, M. and Sick, T.J., Distribution of blood flow in the turtle Pseudemys scripta during progressive anoxia. The Physiologist, in press.

    Google Scholar 

  • Hempel, F.G., Jöbsis, F.F., LaManna, J.C., Rosenthal, M. and Saltzman, H.A., 1977, Oxidation of cerebral cytochrome a,a 3 by oxygen plus carbon dioxide at hyperbaric pressures, J Appl Physiol., 43:873–879.

    PubMed  CAS  Google Scholar 

  • Hochachka, P.W., 1981, Brain, lung and heart functions during diving and recovery, Science, 212:509–514.

    Article  PubMed  CAS  Google Scholar 

  • Hochachka, P.W., Owen, T.G., Allen, T.F. and Whitton, G.C., 1975, Multiple end products of anaerobiosis in diving vertebrates, Comp Biochem and Physiol B, 50:17–22.

    CAS  Google Scholar 

  • Hochachka, P.W. and Somero, G.N., 1973, “Strategies of Biochemical Adaptation,” W.B. Saunders, Co., Philadelphia.

    Google Scholar 

  • Jöbsis, F.F., 1977, What is a molecular oxygen sensor? What is a transduction process? In: “Tissue Hypoxia and Ischemia,” M. Reivich, R. Coburn, S. Lahiri and B. Chance, eds., Plenum Publ Co, 3–18.

    Chapter  Google Scholar 

  • Jöbsis, F.F., Keizer, J.H., LaManna, J.C. and Rosenthal, M., 1977, In vivo reflectance spectrophotometry of cytochrome a,a a,a 3 in the intact cerebral cortex of the cat, J Appl Physiol, 43:858–872.

    PubMed  Google Scholar 

  • Johlin, J.M. and Moreland, F.B., 1933, Studies of the blood picture of the turtle after complete anoxia, J Biol Chem, 103:107–114.

    CAS  Google Scholar 

  • Kreisman, N.R., Sick, T.J. and Bruley, D.F., 1979, Local oxygen tension and its relationship to unit activity during penicillin interictal discharges in the bullfrog hippocampus, Electroenceph Clin Neurophysiol, 46:619–633.

    Article  PubMed  CAS  Google Scholar 

  • Kreisman, N.R., Sick, T.J., LaManna, J.C. and Rosenthal, M., 1981, Local tissue oxygen tension-cytochrome a,a 3 redox relationships in rat cerebral cortex in vivo, Brain Res, 218:161–174.

    Article  PubMed  CAS  Google Scholar 

  • LaManna, J.C., Rosenthal, M., Novack, R.L., Moffett, D.F. and Jöbsis, F.F., 1980, Temperature coefficients for the oxidative metabolic response to electrical stimulation in cerebral cortex, J Neurochem, 34:203–209.

    Article  PubMed  CAS  Google Scholar 

  • Lewis, D.V. and Schuette, W.H., 1975, Temperature dependence of potassium clearance in the central nervous system, Brain Res, 99:175–178.

    Article  PubMed  CAS  Google Scholar 

  • Lutz, P.L., LaManna, J.C., Adams, M.R. and Rosenthal, M., 1980, Cerebral resistance to anoxia in the marine turtle, Resp Physiol, 41:241–251.

    Article  CAS  Google Scholar 

  • McMahon, P.M., Lutz, P.L., Bentley, T., Rosenthal, M. and Sick, T.J., 1983, Relationships among electrical activity, extracellular potassium homeostasis and metabolism during prolonged anoxia in turtle brain, Fed Proc, 42:325.

    Google Scholar 

  • Morris, M.E., 1974, Hypoxia and extracellular potassium activity in the guinea pig cortex, Can J Physiol Pharmacol, 52:872–882.

    Article  PubMed  CAS  Google Scholar 

  • Robin, E.D., 1980, Of men and mitochondria: Coping with hypoxic dysoxia, Amer Rev Resp Dis, 122:517–531.

    PubMed  CAS  Google Scholar 

  • Robin, E.D., Lewiston, N., Newman, A., Simon, L.M. and Theodore, J., 1979, Bioenergetic pattern of turtle brain and resistance to profound loss of mitochondrial ATP generation, Proc Natl Acad Sci, 76:3922–3926.

    Article  PubMed  CAS  Google Scholar 

  • Rosenthal, M., LaManna, J.C., Yamada, S., Younts, B.W. and Somjen, G.G., 1979, Oxidative metabolism, extracellular potassium and sustained potential shifts in cat spinal cord in situ, Brain Res, 162:113–127.

    Article  PubMed  CAS  Google Scholar 

  • Sick, T.J. and Kreisman, N.R., 1981, Potassium ion homeostasis in amphibian brain: Contribution of active transport and oxidative metabolism, J Neurophysiol, 45:998–1012.

    PubMed  CAS  Google Scholar 

  • Sick, T.J., Lutz, P.L., LaManna, J.C. and Rosenthal, M., 1982, Comparative aspects of brain oxygen delivery and mitochondrial oxygen utilization in the turtle and rat, J Appl Physiol, 53:1354–1359.

    PubMed  CAS  Google Scholar 

  • Sick, T.J., Rosenthal, M., LaManna, J.C. and Lutz, P.L., 1982, Brain potassium ion homeostasis during anoxia and metabolic inhibition in the turtle and rat, Amer J Physiol, 243:R281–R288.

    PubMed  CAS  Google Scholar 

  • Storey, K.B. and Hochachka, P., 1974, Enzymes of energy metabolism from a vertebrate facultative anaerobe, Pseudemys scripta, J Biol Chem, 249:1417–1422.

    PubMed  CAS  Google Scholar 

  • Sylvia, A.L. and Rosenthal, M., 1978, The effect of age and lung pathology on cytochrome a,a 3 redox levels in rat cerebral cortex, Brain Res, 146:109–122.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Plenum Press, New York

About this chapter

Cite this chapter

Sick, T.J., Rosenthal, M., Lutz, P.L. (1984). Mechanisms of Brain Survival in Anoxia: Mitochondrial Activity and Ion Homeostasis in Turtle and Rat. In: Bruley, D., Bicher, H.I., Reneau, D. (eds) Oxygen Transport to Tissue—VI. Advances in Experimental Medicine and Biology, vol 180. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-4895-5_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-4895-5_21

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-4897-9

  • Online ISBN: 978-1-4684-4895-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics