Perfused Canine Brain: Metabolism and Blood-Brain Transport During Altered Metabolic States

  • Lester R. Drewes
  • Ashok K. Singh
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 180)


Each organ system of the mammalian anatomy is recognized as performing a unique or specific function in the overall biological activity of the organism. Every organ, in turn, also consists of several cell types, each with often divergent and unique properties that collectively carry out the functions of the particular organ. One approach to investigate the biochemical and physiological properties is to isolate and perfuse the organ with an extracorporeal system.


Octanoic Acid Cerebral Metabolism Cerebral Metabolic Rate Adenylate Energy Charge Local Cerebral Blood Flow 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. L. Chute and D. H. Smyth, Metabolism of the isolated perfused cat’s brain, Quart, J. Exp, Physiol, 27:379 (1939).Google Scholar
  2. 2.
    L. R. Drewes and D. D. Gilboe, Nutrient transport systems in dog brain, Fed, Proc. 36:166 (1977).Google Scholar
  3. 3.
    D. D. Gilboe, Perfusion of the isolated brain, in: “Handbook of Neurochemistry,” Vol. 2 (2nd Ed.), A. Lajtha, ed., Plenum Press, NY (1983).Google Scholar
  4. 4.
    D. D. Gilboe, A. L. Betz, and L. R. Drewes, Use of the isolated canine brain in studies of cerebral metabolism, metabolite transport and cerebrovascular physiology, in: “Research Methods in Neurochemistry,” N. Marks and A. Rodnight, eds., Plenum Press, NY (1975).Google Scholar
  5. 5.
    L. R. Drewes, An improved apparatus for blood perfusion of the canine cerebral vasculature, Neurochem. Res. 5:553 (1980).CrossRefGoogle Scholar
  6. 6.
    B. L. Nazar and A. Schoolwerth, An improved microfluorometric enzymatic assay for the determination of ammonia, Anal. Bio-chem. 95:507 (1979).Google Scholar
  7. 7.
    H. Honorst, Lactate analysis, in: “Methods in Enzymatic Analysis, “ H. Bergmeyer ed., Academic Press, NY (1965).Google Scholar
  8. 8.
    A. L. Betz, D. D. Gilboe, D. L. Yudilevich, and L. R. Drewes, Kinetics of unidirectional glucose transport into the isolated dog brain, Am. J. Physiol. 225:586 (1973).PubMedGoogle Scholar
  9. 9.
    L. R. Drewes and D. D. Gilboe, Glycolysis and the permeation of glucose and lactate in the isolated, perfused dog brain during anoxia and postanoxic recovery, J. Biol. Chem. 248:2489 (1973).PubMedGoogle Scholar
  10. 10.
    R. A. Hartwick and P. R. Brown, The performance of microparticle chemically-bonded anion-exchange resins in the analysis of nucleotides, J. Chromatogr. 112:651 (1975).CrossRefGoogle Scholar
  11. 11.
    S. S. Kety, Blood-tissue exchange methods, Meth. Med. Res. 8:223 (1960).Google Scholar
  12. 12.
    O. Sakurada, C. Kennedy, J. Jehle, J. D. Brown, G. L. Carbin, and L. Sokoloff, Measurement of local cerebral blood flow with iodo[14C]antipyrine, Am. J. Physiol. 234:H59 (1978).PubMedGoogle Scholar
  13. 13.
    R. Hawkins, W. K. Hass, and J. Ransohoff, Measurement of regional brain glucose utilization in vivo using [2-14C]glucose, Stroke 10:690 (1979).PubMedCrossRefGoogle Scholar
  14. 14.
    L. Sokoloff, M. Reivich, C. Kennedy, M. Des Rosiers, C. Patlak, K. Pettigrew, O. Sakurada, and M. Shinohara, The [14C]deoxy-glucose method for the measurement of local cerebral glucose utilization, J. Neurochem. 28:897 (1977).PubMedCrossRefGoogle Scholar
  15. 15.
    J. Fitzpatrick, D. D. Gilboe, L. R. Drewes, and A. L. Betz, Relationship of cerebral oxygen uptake to EEG frequency in isolated canine brain, Am. J. Physiol. 231:1840 (1976).PubMedGoogle Scholar
  16. 16.
    W. H. Oldendorf, Carrier-mediated blood-brain transport of shortchain monocarboxylic organic acids, Am. J. Physiol. 224:1450 (1973).PubMedGoogle Scholar
  17. 17.
    M. Cavazutti and T. E. Duffy, Regulation of local cerebral blood flow in normal and hypoxic newborn dogs, Ann. Neurol. 11:247 (1982).CrossRefGoogle Scholar
  18. 18.
    T. E. Duffy, M. Cavazzuti, N. Cruz, and L. Sokoloff, Local cerebral glucose metabolism in newborn dogs: Effects of hypoxia and halothane anesthesia, Ann. Neurol. 11:233 (1982).PubMedCrossRefGoogle Scholar
  19. 19.
    A. L. Betz, D. D. Gilboe, and L. R. Drewes, Effects of anoxia on net uptake and unidirectional transport of glucose into the isolated dog brain, Brain Res. 67:307 (1974).PubMedCrossRefGoogle Scholar
  20. 20.
    J. Jacquez, Modulation of glucose transport in human red blood cells by ATP, Biochim. Biophys. Acta 727:367 (1983).PubMedCrossRefGoogle Scholar
  21. 21.
    A. Cooper, J. M. McDonald, A. Gelbard, R. Gledhill, and T. E. Duffy, The metabolic fate of 13N-labeled ammonia in rat brain, J. Biol. Chem. 254:4982 (1979).PubMedGoogle Scholar
  22. 22.
    B. K. Siesjö, “Brain Energy Metabolism,” John Wiley, NY (1978).Google Scholar
  23. 23.
    D. D. Gilboe and A. L. Betz, Oxygen uptake in the isolated canine brain, Am. J. Physiol. 224:588 (1973).PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Lester R. Drewes
    • 1
  • Ashok K. Singh
    • 1
  1. 1.Department of Biochemistry, School of MedicineUniversity of Minnesota, DuluthDuluthUSA

Personalised recommendations