Skip to main content

Perfused Canine Brain: Metabolism and Blood-Brain Transport During Altered Metabolic States

  • Chapter
Oxygen Transport to Tissue—VI

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 180))

  • 196 Accesses

Abstract

Each organ system of the mammalian anatomy is recognized as performing a unique or specific function in the overall biological activity of the organism. Every organ, in turn, also consists of several cell types, each with often divergent and unique properties that collectively carry out the functions of the particular organ. One approach to investigate the biochemical and physiological properties is to isolate and perfuse the organ with an extracorporeal system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. L. Chute and D. H. Smyth, Metabolism of the isolated perfused cat’s brain, Quart, J. Exp, Physiol, 27:379 (1939).

    Google Scholar 

  2. L. R. Drewes and D. D. Gilboe, Nutrient transport systems in dog brain, Fed, Proc. 36:166 (1977).

    CAS  Google Scholar 

  3. D. D. Gilboe, Perfusion of the isolated brain, in: “Handbook of Neurochemistry,” Vol. 2 (2nd Ed.), A. Lajtha, ed., Plenum Press, NY (1983).

    Google Scholar 

  4. D. D. Gilboe, A. L. Betz, and L. R. Drewes, Use of the isolated canine brain in studies of cerebral metabolism, metabolite transport and cerebrovascular physiology, in: “Research Methods in Neurochemistry,” N. Marks and A. Rodnight, eds., Plenum Press, NY (1975).

    Google Scholar 

  5. L. R. Drewes, An improved apparatus for blood perfusion of the canine cerebral vasculature, Neurochem. Res. 5:553 (1980).

    Article  Google Scholar 

  6. B. L. Nazar and A. Schoolwerth, An improved microfluorometric enzymatic assay for the determination of ammonia, Anal. Bio-chem. 95:507 (1979).

    CAS  Google Scholar 

  7. H. Honorst, Lactate analysis, in: “Methods in Enzymatic Analysis, “ H. Bergmeyer ed., Academic Press, NY (1965).

    Google Scholar 

  8. A. L. Betz, D. D. Gilboe, D. L. Yudilevich, and L. R. Drewes, Kinetics of unidirectional glucose transport into the isolated dog brain, Am. J. Physiol. 225:586 (1973).

    PubMed  CAS  Google Scholar 

  9. L. R. Drewes and D. D. Gilboe, Glycolysis and the permeation of glucose and lactate in the isolated, perfused dog brain during anoxia and postanoxic recovery, J. Biol. Chem. 248:2489 (1973).

    PubMed  CAS  Google Scholar 

  10. R. A. Hartwick and P. R. Brown, The performance of microparticle chemically-bonded anion-exchange resins in the analysis of nucleotides, J. Chromatogr. 112:651 (1975).

    Article  CAS  Google Scholar 

  11. S. S. Kety, Blood-tissue exchange methods, Meth. Med. Res. 8:223 (1960).

    Google Scholar 

  12. O. Sakurada, C. Kennedy, J. Jehle, J. D. Brown, G. L. Carbin, and L. Sokoloff, Measurement of local cerebral blood flow with iodo[14C]antipyrine, Am. J. Physiol. 234:H59 (1978).

    PubMed  CAS  Google Scholar 

  13. R. Hawkins, W. K. Hass, and J. Ransohoff, Measurement of regional brain glucose utilization in vivo using [2-14C]glucose, Stroke 10:690 (1979).

    Article  PubMed  CAS  Google Scholar 

  14. L. Sokoloff, M. Reivich, C. Kennedy, M. Des Rosiers, C. Patlak, K. Pettigrew, O. Sakurada, and M. Shinohara, The [14C]deoxy-glucose method for the measurement of local cerebral glucose utilization, J. Neurochem. 28:897 (1977).

    Article  PubMed  CAS  Google Scholar 

  15. J. Fitzpatrick, D. D. Gilboe, L. R. Drewes, and A. L. Betz, Relationship of cerebral oxygen uptake to EEG frequency in isolated canine brain, Am. J. Physiol. 231:1840 (1976).

    PubMed  CAS  Google Scholar 

  16. W. H. Oldendorf, Carrier-mediated blood-brain transport of shortchain monocarboxylic organic acids, Am. J. Physiol. 224:1450 (1973).

    PubMed  CAS  Google Scholar 

  17. M. Cavazutti and T. E. Duffy, Regulation of local cerebral blood flow in normal and hypoxic newborn dogs, Ann. Neurol. 11:247 (1982).

    Article  Google Scholar 

  18. T. E. Duffy, M. Cavazzuti, N. Cruz, and L. Sokoloff, Local cerebral glucose metabolism in newborn dogs: Effects of hypoxia and halothane anesthesia, Ann. Neurol. 11:233 (1982).

    Article  PubMed  CAS  Google Scholar 

  19. A. L. Betz, D. D. Gilboe, and L. R. Drewes, Effects of anoxia on net uptake and unidirectional transport of glucose into the isolated dog brain, Brain Res. 67:307 (1974).

    Article  PubMed  CAS  Google Scholar 

  20. J. Jacquez, Modulation of glucose transport in human red blood cells by ATP, Biochim. Biophys. Acta 727:367 (1983).

    Article  PubMed  CAS  Google Scholar 

  21. A. Cooper, J. M. McDonald, A. Gelbard, R. Gledhill, and T. E. Duffy, The metabolic fate of 13N-labeled ammonia in rat brain, J. Biol. Chem. 254:4982 (1979).

    PubMed  CAS  Google Scholar 

  22. B. K. Siesjö, “Brain Energy Metabolism,” John Wiley, NY (1978).

    Google Scholar 

  23. D. D. Gilboe and A. L. Betz, Oxygen uptake in the isolated canine brain, Am. J. Physiol. 224:588 (1973).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Plenum Press, New York

About this chapter

Cite this chapter

Drewes, L.R., Singh, A.K. (1984). Perfused Canine Brain: Metabolism and Blood-Brain Transport During Altered Metabolic States. In: Bruley, D., Bicher, H.I., Reneau, D. (eds) Oxygen Transport to Tissue—VI. Advances in Experimental Medicine and Biology, vol 180. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-4895-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-4895-5_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-4897-9

  • Online ISBN: 978-1-4684-4895-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics