Skip to main content

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 181))

  • 46 Accesses

Abstract

“Plasticity” is a term that describes the anatomical, cellular, and molecular reorganizations of the nervous system that occur in response to experience. It serves as a useful rubric to distinguish processes that are environmentally regulated from those that unfold from a rigidly programmed read-out of the genome. Thus, some connections might be termed “plastic” and others “hard-wired”. The experience that modifies connections is, of course, ultimately enforced at the molecular level, often through modification of neuronal activity. However, the experimental paradigm may utilize manipulations at a site distant from the actual neurons of interest. Analysis of changes in connections to the cortex during visual deprivation provide one elegant example of the power of this approach1. Plasticity of the nervous system is prominent in developing animals, where even transient deprivation may have permanent sequelae.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wiesel, T.J. and Hubel, D. (1965). Comparison of the effects of unilateral and bilateral eye closure on cortical unit responses in kittens. J. Neurophysiology. 28: 1029–1040.

    CAS  Google Scholar 

  2. Brown, M., Jansen, J. and Van Essen, D. (1976). Polyneuronal innervation of skeletal muscle in newborn rats and its elimination during maturation. J. Physiol. (Lond). 26: 387–422.

    Google Scholar 

  3. Landmesser, L. (1980). The generation of neuromuscular specificity. Ann. Rev. Neurosci. 3: 279–302.

    Article  PubMed  CAS  Google Scholar 

  4. Sperry, R.W. (1943). Visuomotor coordination in the newt (triturus viridescens) after regeneration of the optic nerve. J. Comp. Neurol. 79: 33–55.

    Article  Google Scholar 

  5. Kuwada, J. and Kramer A. (1983). Embryonic development of the leech nervous system: primary axon outgrowth of identified neurons. J. Neurosci. 3: 2098–2111.

    PubMed  CAS  Google Scholar 

  6. Lumsden, A. and Davies, A. (1983). Earliest sensory nerve fibers are guided to peripheral targets by attractants other than nerve growth factor. Nature. 306: 786–788.

    Article  PubMed  CAS  Google Scholar 

  7. Trisler, G.D., Schneider, M. and Nirenberg, M. (1981). A topographic gradient of molecules in retina can be used to identify neuron position. Proc. Natl. Acad. Sci. 78: 2145–2149.

    Article  PubMed  CAS  Google Scholar 

  8. Chaudhari, N. and Hahn, W.E. (1983). Genetic expression in the developing brain. Science. 220: 924–928.

    Article  PubMed  CAS  Google Scholar 

  9. Matthew, W.D., Tsavaler, L. and Reichardt, L.F. (1981). Identification of a synaptic vesicle-specific membrane protein with a wide distribution in neuronal and neurosecretory tissue. J. Cell Biol. 91: 257–269.

    Article  PubMed  CAS  Google Scholar 

  10. DeCamilli, P., Harris, S., Huttner, W. and Greengard, P. (1983). Synapsin 1 (Protein 1), a nerve-terminal-specific phosphoprotein II: its specific association with synaptic vesicles demonstrated by immunocytochemistry in agarose-embedded synaptosomes. J. Cell Biol. 96: 1355–1373.

    Article  CAS  Google Scholar 

  11. Morel, N., Manaranche, R., Israel, M. and Gulik-Krzywicki. (1982). Isolation of a presynaptic plasma membrane fraction from Torpedo cholinergic synaptosomes: evidence for a specific protein. J. Cell Biol. 93: 349–356.

    Article  PubMed  CAS  Google Scholar 

  12. Mijanich, G.P., Porasier, A.R. and Kelly, R.B. (1982). Partial purification of presynaptic plasma membrane by immunoabsorption. J. Cell Biol. 94: 88–96.

    Article  Google Scholar 

  13. Sanes, J.R. (1983). Roles of extracellular matrix in neural development. Ann. Rev. Physiol. 45: 581–600.

    Article  CAS  Google Scholar 

  14. Burden, S. (1981). Monoclonal antibodies to the frog nerve-muscle synapse. In — Monoclonal Antibodies to Neural Antigens (eds — McKay, R., Raff, M., Reichardt, L.F.) p. 247–257. Cold Spring Harbor.

    Google Scholar 

  15. Henderson, C., Huchet, M. and Changeux, J.P. (1983). Denervation increases a neurite-promoting activity in extracts of skeletal muscle. Nature. 302: 609–611.

    Article  PubMed  CAS  Google Scholar 

  16. Christian, C.N., Daniels, M.P., Sugiyama, H., Vogel, Z., Jacques, L. and Nelson, P.G. (1978). A factor from neurons increases the number of acetylcholine receptor aggregates in cultured muscle cells. Proc. Natl. Acad. Sci., USA. 75: 4011–4015.

    Article  PubMed  CAS  Google Scholar 

  17. Ip, N., Perlman, R. and Zigmond, R.E. (1983). Acute transsynaptic regulation of tyrosine 3-monooxygenase activity in the rat superior cervical ganglion: evidence for both cholinergic and noncholinergic mechanisms. Proc. Natl. Acad. Sci., USA. 80: 2081–2085.

    Article  PubMed  CAS  Google Scholar 

  18. Patterson, P.H. and Chun, L.L.Y. (1974). The influence of non-neuronal cells on catecholamine and acetylcholine synthesis and accumulation in cultures of dissociated sympathetic neurons. Proc. Natl. Acad. Sci., USA. 71: 3607–3610.

    Article  PubMed  CAS  Google Scholar 

  19. O’Brien, R., Ostberg and A. Vrbova. (1978). Observations on the elimination of polyneuronal innervation in developing mammalian skeletal muscle. J. Physiol. 282: 571–582.

    PubMed  Google Scholar 

  20. Fishman, M.C. and Nelson, P.G. (1981). Depolarization-induced synaptic plasticity at cholinergic synapses in tissue culture. J Neurosci. 1: 1043–1051.

    PubMed  CAS  Google Scholar 

  21. Thompson, W., Kuffler, D. and Jansen, J. (1979). The effect of prolonged, reversible block of nerve impulses on the elimination of polyneural innervation of newborn rat skeletal muscle fibers. Neuroscience. 4: 271–281.

    Article  PubMed  CAS  Google Scholar 

  22. Purves, D. and Hume, R. (1981). The relation of postsynaptic geometry to the number of presynaptic axons that innervate autonomic ganglion cells. J. Neurosci. 1: 441–452.

    PubMed  CAS  Google Scholar 

  23. Miyata, Y. and Yoskioka. (1980). Selective elimination of motor nerve terminals in the rat soleus muscle during development. J. Physiol. (Lond). 309: 631–646.

    CAS  Google Scholar 

  24. Korneliussen, H. and Jansen, J. (1976). Morphological aspects of the elimination of polyneuronal innervation of skeletal muscle fibers in newborn rats. J. Neurocytol. 5: 591–604.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Plenum Press, New York

About this chapter

Cite this chapter

Fishman, M.C. (1984). Plasticity of the Developing Synapse. In: Lauder, J.M., Nelson, P.G. (eds) Gene Expression and Cell-Cell Interactions in the Developing Nervous System. Advances in Experimental Medicine and Biology, vol 181. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-4868-9_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-4868-9_18

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-4870-2

  • Online ISBN: 978-1-4684-4868-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics