Skip to main content

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 181))

Abstract

In 1956 Eugene Roberts stated, “Perhaps the most difficult question to answer would be whether the presence in the grey matter of the central nervous system of uniquely high concentrations of γ-aminobutyric acid and the enzyme which forms it from glutamic acid has a direct or indirect connection to conduction of the nerve impulse in this tissue”. Thirty years later γ-aminobutyrate (GABA, 4-aminobutyrate) is universally accepted as the major inhibitory synaptic transmitter. This review is trying to explore its additional roles, beyond a mediation of synaptic transmission. Specifically, we are examining a possibility that GABA, on account of its characteristic chemical properties in interaction with excitable membranes, mediates communication among differentiating neurons, thus influencing expression of neuronal functions, making the orderly development of synaptic connections possible.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams, P.R., and Brown, D.A., 1975, Action of γ-aminobutyric acid on the sympathetic ganglion cells, J. Physiol., London, 250: 85–120.

    CAS  Google Scholar 

  • Adams, J.C., 1981, Heavy metal intensification of DAB-based HRP reaction product, J. Histochem. Cytochem., 19: 755.

    Google Scholar 

  • Anvengine, J.B., Jr., and Sidman, R.L., 1961, Autoradiographic study of cell migration during histogenesis of cerebral cortex in the mouse, Nature, 192: 766–768.

    Google Scholar 

  • Bahr, S. and Wolff, J.R., Postnatal development and loss of axosomatic synapses in the rat visual cortex. Morphogenesis and quantitative evaluation of type 1 and type 2 synapses (submitted).

    Google Scholar 

  • Balcar, V.J., Mark, J., Borg, J., and Mandel, P., 1979, High affinity uptake of γ-aminobutyric acid in cultured glial and neuronal cells, Neurochem. Res., 4: 339–354.

    Article  PubMed  CAS  Google Scholar 

  • Balcar, V.J., and Hauser, K.L., 1982, Development of uptake of γ-aminobutyrate in cultured neurons, 12th Intern. Congr. Biochem. (Abstract), 95.

    Google Scholar 

  • Balcar, V.J., Dammasch, I., and Wolff, J.R., 1983, Is there a non-synaptic component in the K+-stimulated release of GABA in the developing rat cortex? Dev. Brain Res., 10: 309–311.

    Article  CAS  Google Scholar 

  • Berry, M., and Rogers, A.W., 1965, The migration of neuroblasts in the developing cerebral cortex, J. Anat., 99: 691–709.

    PubMed  CAS  Google Scholar 

  • Berry, M., 1982, Cellular differentiation: Development of dendritic arborizations under normal and experimentally altered conditions, in: “Development and Modifiability of the Cerebral Cortex”, P. Rakic and P.S. Goldman-Rakic, eds., Neurosci. Res. Progr. Bull., 20: 451–461.

    Google Scholar 

  • Bowery, N.G., and Brown, D.A., 1972, γ-aminobutyric acid uptake by sympathetic ganglia, Nature, 238: 89–91.

    Article  CAS  Google Scholar 

  • Chronwall, B.M., and Wolff, J.R., 1978a, Classification and location of neurons taking up 3H-GABA in the visual cortex of rats, in:“Amino Acids as Chemical Transmitters”, Plenum Press, New York, pp. 297–303.

    Chapter  Google Scholar 

  • Chronwall, B.M., and Wolff, J.R., 1978b, Aspects on the development on non-pyramidal neurons in the neocortex of rat, Zoon, 6: 145–148.

    Google Scholar 

  • Chronwall, B.M., and Wolff, J.R., 1980, Prenatal and postnatal development of GABA-accumulating cells in the occipital cortex of rat, J. Comp. Neurol., 190: 187–208.

    Google Scholar 

  • Costa, E., Di Chiara, G., and Gessa, G.L., ed., 1981, “GABA and Benzodiazepine Receptors”, Adv. Biochem. Pharmaco1., 26, Raven Press, New York.

    Google Scholar 

  • Coyle, J.T., and Enna, S.J., 1976, Neurochemical aspects of the ontogenesis of GABA-ergic neurons in the rat brain, Brain Res., 111: 119–133.

    Article  PubMed  CAS  Google Scholar 

  • Coyle, J.T., 1982, Development of neurotransmitters in the neocortex, in: “Development and Modifiability of the Cerebral Cortex”, P. Rakic and P.S. Goldman-Rakic, eds., Neurosci. Res. Progr. Bull. 20: 479–492.

    Google Scholar 

  • Davies, L.P., Johnston, G.A.R., and Stephanson, A.L., 1975, Postnatal changes in the potassium-stimulated, calcium-dependent release of radioactive GABA and glycine from slices of rat central nervous tissue, J. Neurochem., 387–392.

    Google Scholar 

  • Emson, P.C., and Hunt, S.P., 1981, Anatomical chemistry of the cerebral cortex, in: “The Organization of the Cerebral Cortex”, F.O. Schmitt, F.G. Worden, G. Adelmann, S.G. Dennis, eds., MIT-Press, Cambridge, Massachusetts, and London, England, pp. 325–345.

    Google Scholar 

  • Fagg, G.E., and Lane, J.D., 1979, The uptake and release of putative amino acid transmitters, Neuroscience, 4: 1015–1036.

    Article  PubMed  CAS  Google Scholar 

  • Gallyas, F., Görcs, T., and Merchenthal, I., 1982, High-grade intensification of the end product of the diaminobenzidine reaction for peroxidase histochemistry, J. Histochem. Cytochem., 30: 183–184.

    Article  PubMed  CAS  Google Scholar 

  • Hauser, K.L., and Heid, J., 1978, Morphology and biochemistry of rat cortical neurons in dissociated cell culture, Proc. Eur. Soc. Neurochem., 1: 503.

    Google Scholar 

  • Hauser, K.L., Balcar, V.J., and Bernasconi, R., 1980, Development of GABA neurons in dissociated cell culture of rat cerebral cortex, in: “GABA Neurotransmission”, H. Lal, ed., Brain Res. Bull. 5, suppl. 2: 37–41.

    Google Scholar 

  • His, W., 1904, Die Entwicklung des menschlichen Gehirns während der ersten Monate, Hirzel Verlag’, Leipzig.

    Google Scholar 

  • Hökfelt, T., and Ljungdahl, A., 1972, Autoradiographic identific-action of cerebral and cerebellar cortical neurons accumulating labeled gamma-aminobutyric acid (3H-GABA). Exp. Brain Res., 14: 354–362.

    Article  PubMed  Google Scholar 

  • Horton, R.W., 1980, GABA and seizures induced by inhibition of glutamic acid decarboxylase, in: GABA Neurotransmission”, H. Lal, ed., Brain Res. Bull. 5, suppl. 2: 605–608.

    Google Scholar 

  • Houser, C.R., Lee, M., and Vaughn, J.E., 1983, Immunocytochemical localization of glutamic acid decarboxylase in normal and de-afferented superior colliculus: Evidence for reorganization of γ-aminobutyric acid synapses. J. Neurosci. 3: 2030–2042.

    PubMed  CAS  Google Scholar 

  • Iversen, L.L., and Neal, M.J., 1968, The uptake of 3H-GABA by slices of rat cerebral cortex, J. Neurochem., 15: 1141–1149.

    Article  PubMed  CAS  Google Scholar 

  • Iversen, L.L., and Johnston, G.A.R., 1971, GABA-uptake in rat central nervous system: Comparison of uptake in slices and homogenates and the effects of some inhibitors. J. Neurochem. 18: 1939–1950.

    Article  PubMed  CAS  Google Scholar 

  • Iversen, L.L., and Kelly, J.S., 1975, Uptake and metabolism of γ-aminobutyric acid by neurons and glial cells, Biochem. Pharmacol., 24: 933–938.

    Article  PubMed  CAS  Google Scholar 

  • Jacobson, M., 1978, “Developmental Neurobiology”, Plenum Press, New York.

    Google Scholar 

  • Johnston, G.A.R., and Davies, L.P., 1974, Postnatal changes in the high affinity uptake of glycine and GABA in the rat central nervous system. J. Neurochem., 22: 101–105.

    Article  PubMed  CAS  Google Scholar 

  • Johnston, G.A.R., 1977, Effects of calcium on the potassium-stimulated release of radioactive β-alanine and γ-aminobutyric acid from slices of rat cerebral cortex and spinal cord, Brain Res., 121: 179–181.

    Article  PubMed  CAS  Google Scholar 

  • Jóo, F., Dames, W., and Wolff, J.R., 1979, Effect of prolonged sodium bromid administration on the fine structure of dendrites in the superior ganglion of adult rat. Progr. in Brain Res., 51: 109–115.

    Article  Google Scholar 

  • Katz, R.I., Chase, T.N., and Kopin, I.J., 1969, Effect of ions on stimulus-induced release of amino acids from mammalian brain slices. J. Neurochem. 16: 961–964.

    Article  PubMed  CAS  Google Scholar 

  • Levi, G., and Raiteri, M., 1974, Exchange of neurotransmitter amino acids at nerve endings can stimulate high-affinity uptake. Nature, 250: 735–737.

    Article  PubMed  CAS  Google Scholar 

  • Martin, D.L., 1976, Carrier-mediated transport and removal of GABA from synaptic regions, in: “GABA in Nervous System Function”, E. Roberts, T.N. Chase, D.B. Tower, eds., Raven Press, New York, pp. 347–386.

    Google Scholar 

  • Meier, E., Drejer, J., and Schousboe, A., 1983, Trophic actions of GABA on the development of physiologically active GABA receptors, in: “CNS-Receptors from Molecular Pharmacology to Behaviour”, P. Mandel, F.V. DeFeudis, eds., Raven Press, New York, Adv. Biochem. Psychopharmacol. 37: 47–58.

    Google Scholar 

  • Neal, M.J., and Bowery, N.G., 1977, Cis-3-aminocyclohexane-carboxylic acid: a substrate for the neuronal GABA transport system, Brain Res., 138: 169–174.

    Article  PubMed  CAS  Google Scholar 

  • Parnavelas, J.G., and Uylings, H.B.M., 1980, Growth of non-pyramidal neurons in the visual cortex of the rat: A morphometric study, Brain Res., 193: 373–382.

    Article  PubMed  CAS  Google Scholar 

  • Raedler, A., and Sievers, J., 1975, The development of the visual system of the albino rat, Adv. Anat. Embryol. Cell Biol., 50, Springer, Berlin-Heidelberg-New York, pp. 88.

    Book  Google Scholar 

  • Rakic, P., 1972, Mode of cell migration to the superficial layers of fetal monkey neocortex, J. Comp. Neurol., 145: 61–84.

    Article  PubMed  CAS  Google Scholar 

  • Rakic, P., 1974, Neurons in rhesus monkey visual cortex: systematic relation between time of origin and eventual disposition, Science, 183: 425–427.

    Article  PubMed  CAS  Google Scholar 

  • Redburn, D.A., Broome, D., Ferkany, J., and Enna, S.J., 1978, Development of rat brain uptake and calcium-dependent release of GABA, Brain Res., 152: 511–519.

    Article  PubMed  CAS  Google Scholar 

  • Ribak, C.E., 1978, Aspinous and sparsely-spinous stellate neurons in the visual cortex of rats contain glutamic acid decarboxylase, J. Neurocytol., 7: 461–478.

    Article  PubMed  CAS  Google Scholar 

  • Rickmann, M., Chronwall, B.M., and Wolff, J.R., 1977, On the development of non-pyramidal neurons and axons outside the cortical plate: The early marginal zone as a pallial anlage, Anat. Embryol., 151: 285:307.

    Article  PubMed  CAS  Google Scholar 

  • Rickmann, M., and Wolff, J.R., 1977, Cytological characteristics of early stages of glial differentiatin in the neocortex, Folia Morphol. 25: 235–239.

    Google Scholar 

  • Rickmann, M., and Wolff, J.R., Prenatal Gliogenesis in the neopallium of rat. Adv. Anat. Embryol. Cell Biol.(in press).

    Google Scholar 

  • Seiler, N, and Sarhan, S., 1983, Metabolic routes of GABA formation in chick embryo brain, Neurochem. Intern., 5: 625–633.

    Article  CAS  Google Scholar 

  • Srinivasan, V., Neal, M.J., and Mitchell, J.F., 1969, The effect of electrical stimulation and high potassium concentrations on the efflux of [3H]γ-aminobutyric acid from brain slices. J. Neurochem., 16: 1235–1244.

    Article  PubMed  CAS  Google Scholar 

  • Taberner, P.V., Pearce, M.J., and Watkins, J.C., 1977, The inhibition of mouse brain glutamate decarboxylase by some structural analogues of L-glutamatic acid, Biochem. Pharmacol., 26: 345–349.

    Article  PubMed  CAS  Google Scholar 

  • Weissmann-Nanopolous, D., Belin, M.F., Didier, M., Aguera, M., Partisani, M., Maitre, M., and Pujol, J.F., 1983, Immuno-histochemical evidence for neuronal and non-neuronal synthesis of GABA in the rat subcommissural organ. Neurochem. Intern., 5: 785–791.

    Article  Google Scholar 

  • Wilson, S.H., Schrier, B.K., Farber, J.L., Thompson, E.J., Rosenberg, R.N., Blume, A.J., and Nirenberg, M.W., 1972, Markers for gene expression in cultured cells from the nervous system, J. Biol. Chem., Vol. 247, No. 10, pp. 3159–3169.

    PubMed  CAS  Google Scholar 

  • Wolff, J.R., 1978, Ontogenetic aspects of cortical architecture: Lamination, in:”Architectonics of the Cerebral Cortex, M.A. Brazier and H. Petsche, eds., Raven Press, New York, pp. 159–173.

    Google Scholar 

  • Wolff, J.R., Chronwall, B.M., and Rickmann, M., 1978, Morphogenese relations between cell migration and synaptogenesis in the neocortex of rat, in:“Proceeding of the European Society for Neurochemistry”, vol. 1., V. Neuhoff, ed., Verlag Chemie, Weinheim-New York, pp. 158–173.

    Google Scholar 

  • Wolff, J.R., Jóo, F., and Dames, W., 1978, Plasticity in dendrites shown by continuous GABA administration in superior cervical ganglion of adult rat, Nature, 274: 72–74.

    Article  PubMed  CAS  Google Scholar 

  • Wolff, J.R., Rickmann, M., and Chronwall, B.M., 1979, Axo-glial synapses and GABA-accumulating glial cells in the embryonic neocortex of the rat, Cell Tiss. Res., 201: 239–248.

    CAS  Google Scholar 

  • Wolff, J.R., 1981, Some morphogenetic aspects of the development of the central nervous system, in: “Behavioral Development. The Bielefeld Interdisciplinary Projec”, K. Immelmann, G.W. Barlow, L. Petrinovich and M. Main (eds.), Cambridge University Press, New York, pp. 164–190.

    Google Scholar 

  • Wolff, J.R., 1981, Evidence for a dual role of GABA as a synaptic transmitter and a promoter of synaptogenesis, in: “Amino Acid Neurotransmitters”, F.V. DeFeudis, P. Mandel, eds., Raven Press, New York, pp. 459–466.

    Google Scholar 

  • Wolff, J.R., Jóo, F., Dames, W., and Fehér, O., 1981, Neuroplasticity in the superior cervical ganglion as a consequence of long-lasting inhibition, in: “Cellular Analogues of Conditioning and Neural Plasticity”, O. Fehér, F. Joó, eds., Adv. Physiol. Sci., Vol. 36, pp. 1–9.

    Google Scholar 

  • Wolff, J.R., and Chronwall, B.M., 1982, Axosomatic synapses in the visual cortex of adult rat. A comparison between GABA-accumulating and other neurons, J. Neurocytol., 11: 409–425.

    Article  PubMed  CAS  Google Scholar 

  • Wolff, J.R., and Wagner, G.P., 1983, Selforganization in synaptogenesis: Interaction between the formation of excitatory and inhibitory synapses, in: “Synergetics of the Brain”, E. Basar, H. Flohr, H. Haken and A.J. Mandel, eds., Springer Verlag, Berlin, Heidelberg, New York, Tokio, pp. 50–59.

    Chapter  Google Scholar 

  • Wolff, J.R., Chronwall, B.M., and Rickmann, M., 1983, “Diffuse deposition mode” provides rat visual cortex with non-pyramidal and GABA-ergic neurons, 4th Intern. Congr. Intern. Soc. for Developm. Neurosci., Abstr. p. 54.

    Google Scholar 

  • Wolff, J.R., Böttcher, H., Zetzsche, T., Oertel, W.H., and Chronwal, B.M., Development of GABA-ergic neurons in rat visual cortex as identified by glutamatedecarboxylase-like immunoreactivity, Neurosci. Lett, (in press).

    Google Scholar 

  • Wong, P.T., and McGeer, E., 1981, Postnatal changes of GABA-ergic and glutamatergic parameters, Dev. Brain Res. 1: 519–530.

    Article  CAS  Google Scholar 

  • Wu, J.Y., 1980, Properties of L-glutamate decarboxylase from non-neuronal tissues, in: “GABA Neurotransmission”, H. Lal, ed., Brain Res. Bull., 5, suppl. 2:31–36.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Plenum Press, New York

About this chapter

Cite this chapter

Wolff, J.R., Balcar, V.J., Zetzsche, T., Böttcher, H., Schmechel, D.E., Chronwall, B.M. (1984). Development of GABA-Ergic System in Rat Visual Cortex. In: Lauder, J.M., Nelson, P.G. (eds) Gene Expression and Cell-Cell Interactions in the Developing Nervous System. Advances in Experimental Medicine and Biology, vol 181. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-4868-9_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-4868-9_17

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-4870-2

  • Online ISBN: 978-1-4684-4868-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics