Skip to main content

New Instrumentation Facilitates the Study of Genes Coding for Molecules Involved in Cell Surface Recognition

  • Chapter
  • 44 Accesses

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 181))

Abstract

During the last two decades studies of the molecular mechanisms by which antibody diversity is generated have provided us with fundamental insights into the structure, organization and programmed movement of immunoglobulin genes during development (Potter et al., 1964; Dreyer et al., 1967; Hood et al., 1975; Huang and Dreyer; 1978; Leder, 1982). Progress in this specialized area of developmental biology has occurred far more rapidly than in any other developmental system. (An appreciation of the level of knowledge extant in 1967 may be obtained by reading the proceedings of the Cold Spring Harbor Symposium on Quantitative Biology, volume 32, 1967.) The depth of genetic and molecular understanding which has been gained in this field is due in large part to the existence of myelomas, tumors of antibody-producing cells, from which gram quantities of antibody molecules could easily be obtained. These amounts of protein were necessary and sufficient, given the methods and instrumentation available in the sixties, to do structural analyses and to obtain protein sequence information about these molecules.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barany, G. and Merrifield, R. B. (1980). Solid-phase peptide synthesis, in: “The Peptides,” Vol. II, E. Gross and J. Meienhofer, eds. Academic Press, New York.

    Google Scholar 

  • Braunitzer, G. (1977). Pehr Victor Edman, in: “Solid Phase Methods in Protein Sequence analysis,” A. Previero and M.-A. Coletti-Previero, eds. Elsevier/North-Holland Biomedical Press, Amsterdam.

    Google Scholar 

  • Brown, J. P., Hewick, R. M., Hellström, I., Hellström, K. E., Doolittle, R. F. and Dreyer, W. J. (1982). Human melanoma- associated antigen p97 is structurally and functionally related to transferrin. Nature 296:171–173.

    Article  PubMed  CAS  Google Scholar 

  • Cowan, W. (1982). A synoptic view of the development of the vetebrate central nervous system, in: “Repair and Regeneration of the Nervous System,” J. G. Nicholls, ed. Life Sciences Research Report 24. Springer Verlag, New York.

    Google Scholar 

  • de Blas, A. L. (1984). Hybridoma technology applied to neuro-biological problems, in: “Current Methods in Cellular Neurobiology,” J. L. Barker and J. F. McKelvy, eds. John Wiley and Sons, New York.

    Google Scholar 

  • Dreyer, W. J. and Bennett, J. C. (1965). The molecular basis of antibody formation: A paradox. Proc. Natl. Acad. Sci. USA 54:864–869.

    Article  PubMed  CAS  Google Scholar 

  • Dreyer, W. J., Grey, W. and Hood, L. (1967). The genetic, molecular, and cellular basis of antibody formation: Some facts and a unifying hypothesis. Cold Spring Harbor Symp. Quant. Biol. 32:353–367.

    Article  CAS  Google Scholar 

  • Dreyer, W. J., Kupperman, A., Boettger, H. G., Giffin, C. E., Norris, D. O., Gortch, S. L. and Theard, L. P. (1974). Automatic mass-spectrometric analysis: Preliminary report on development of a novel mass-spectrometric system for biomedical applications. Clin. Chem. 20:998–1002.

    PubMed  CAS  Google Scholar 

  • Dreyer, W. J. (1977). Peptide and protein sequencing method and apparatus. U.S. Patent #4,065,412.

    Google Scholar 

  • Dreyer, W. J. (1984). Molecular evolution, antibody formation, and embryogenesis, in: “The Impact of Protein Chemistry on the Biomedical Sciences,” A. N. Schechter, A. Dean, R. F. Goldberger, eds. Academic Press, New York.

    Google Scholar 

  • Edman, P. and Begg, G. (1967). A protein sequenator. Eur. J. Biochem. 1:80–91.

    Article  PubMed  CAS  Google Scholar 

  • Fujita, S. C., Zipursky, S. L., Benzer, S., Ferrus, A. and Shotwell S. L. (1982). Monoclonal antibodies against the Drosophila nervous system. Proc. Natl. Acad. Sci. USA 79:7929–7933.

    Article  PubMed  CAS  Google Scholar 

  • Grumet, M., Rutishauser, U. and Edelman, G. M. (1983). Neuronglia adhesion is inhibited by antibodies to neural determinants. Science 222:60–62.

    Article  PubMed  CAS  Google Scholar 

  • Grumet, M., Rutishauser, U. and Edelman, G. M. (1984). Two antigenically related neuronal cell adhesion molecules of different specificities mediate neuron-neuron and neuron-glia adhesion. Proc. Natl. Acad. Sci. USA 81:267–271.

    Article  PubMed  CAS  Google Scholar 

  • Hewick, R. M., Hunkapiller, M. W., Hood, L. E. and Dreyer, W. J. (1981). A gas-liquid solid phase peptide and protein sequenator. J. Biol. Chem. 256:7990–7997.

    PubMed  CAS  Google Scholar 

  • Hood, L., Campbell, J. and Elgin, S. (1975). The organization, expression and evolution of antibody genes and other multi-gene families. Ann. Rev. Genet. 9:305–353.

    Article  PubMed  CAS  Google Scholar 

  • Hood, L., Huang, H. V. and Dreyer, W. J. (1977). The area code hypothesis: The immune system provides clues to understanding the genetic and molecular basis of cell recognition during development. J. Supramol. Struct. 7:531–559.

    Article  PubMed  CAS  Google Scholar 

  • Huang, H., and Dreyer, W. J. (1978). Bursectomy in ovo blocks the generation of immunoglobulin diversity. J. Immunol. 121:1738–1747.

    PubMed  CAS  Google Scholar 

  • Horvath, S. J., Firca, J., Graham, C., Hunkapiller, T., Caruthers, M., Hunkapiller, M. W., and Hood, L. (1984). An automated DNA synthesizer employing nucleoside 3’ phosphoramidites. (Submitted for publication).

    Google Scholar 

  • Hunkapiller, M. W., Lujon, E., Ostrander, F. and Hood, L. E. (1983). Isolation of microgram quantities of proteins from Polyacrylamide gels for amino acid sequence analysis. Meth. Enzymol. 91:227–236.

    Article  PubMed  CAS  Google Scholar 

  • Katz, D. H. (1977). Lymphocyte Differentiation, Recognition, and Regulation. Academic Press, New York.

    Google Scholar 

  • Kent, S. B. H. (1980). New aspects of solid-phase peptide synthesis, in: “Biomedical Polymers,” E. P. Goldberg and A. Nakajima. eds. Academic Press, New York.

    Google Scholar 

  • KCJrzinger, K., Reynolds, T., Germain, R. N., Davignon, D., Martz, E., and Springer, T. A. (1981). A novel lymphocyte function-associated antigen (LFA-1): cellular distribution, quantitative expression, and structure. J. Immunol. 127:596–602.

    Google Scholar 

  • KCJrzinger, K. and Springer, T. A. (1982). Purification and structural characterization of LFA-1, a lymphocyte function-associated antigen, and Mac-1, a related macrophage differentiation antigen. J. Biol. Chem. 257:12412–12418.

    Google Scholar 

  • Leder, P. (1982). The genetics of antibody diversity. Scientific Am. 246:102–115.

    Article  CAS  Google Scholar 

  • Maniatis, T., Hardison, R. C., Lacy, E., Lauer, J., O’Connell, C., Quon, D., Sim, G. K. and Efstratiadis, A. (1978). The isolation of structural genes from libraries of eukaryotic DNA. Cell 15:687–701.

    Article  PubMed  CAS  Google Scholar 

  • Milstein, C. and Lennox, E. (1980). The use of monoclonal antibody techniques in the study of developing cell surfaces. Curr. Top. Dev. Biol. 14:1–32.

    Article  PubMed  CAS  Google Scholar 

  • Potter, M., Dreyer, W. J., Kuff, E. L., and McIntire, K. R. (1964). Heritable variation in Bence Jones protein structure in an inbred strain of mice. J. Mol. Biol. 8:814–822.

    Article  PubMed  CAS  Google Scholar 

  • Rakic, P. (1982). The role of neuronal-glial cell interaction during brain development, in: “Neuronal-glial Cell Interrelationships,” T. A. Sears, ed. Life Sciences Research Report 20. Springer Verlag, New York.

    Google Scholar 

  • Rathjen, F. G. and Schachner, M. (1984). Immunocytological and biochemical characterization of a new neuronal cell surface component (L1 antigen) which is involved in cell adhesion. EMBO J. 3:1–10.

    PubMed  CAS  Google Scholar 

  • Schachner, M., Faissner, A., Kruse, J., Lindner, J., Meier, D. H., Rathjen, F. G. and Wernecke, H. (1983). Cell type-specificity and developmental expression of neural cell surface components involved in cell interactions and of structurally related molecules. Cold Spring Harbor Symp. Quant. Biol. 48: in press.

    Google Scholar 

  • Springer, T. A., Galfré, G., Secher, D. S., and Milstein, C. (1979). Mac-1: a macrophage differentiation antigen identified by monoclonal antibody. Eur. J. Immunol. 9:301–306.

    Article  PubMed  CAS  Google Scholar 

  • Trowbridge, I. S., and Omary, M. B. (1981). Molecular complexity of leukocyte surface glycoproteins related to the macrophage differentiation antigen Mac-1. J. Exp. Med. 154:1517–1524.

    Article  PubMed  CAS  Google Scholar 

  • Zipursky, S. L., Venkatesh, T. R., Teplow, D. B. and Benzer, S. (1984). Neuronal development in the Drosophila retina: Monoclonal antibodies as molecular probes. Cell 36:15–26.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Plenum Press, New York

About this chapter

Cite this chapter

Dreyer, W.J., Roman, J., Teplow, D.B. (1984). New Instrumentation Facilitates the Study of Genes Coding for Molecules Involved in Cell Surface Recognition. In: Lauder, J.M., Nelson, P.G. (eds) Gene Expression and Cell-Cell Interactions in the Developing Nervous System. Advances in Experimental Medicine and Biology, vol 181. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-4868-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-4868-9_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-4870-2

  • Online ISBN: 978-1-4684-4868-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics